890 resultados para AMPEROMETRIC BIOSENSORS
Resumo:
Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.
Resumo:
In dieser Arbeit wurden kortikale neuronale Netzwerke auf Multielektrodenarrays auf ihre Tauglichkeit als zellbasiertes Biosensorsystem untersucht. Der Schwerpunkt der pharmakologischen Untersuchungen an den ausgereiften kortikalen Netzwerken lag auf dem Einsatz von Substanzen, welche auf den GABAA-Rezeptor einwirken. Die Modifikation des spontan generierten Aktivitätsmusters ließ dabei Rückschlüsse auf die Wirksamkeit und den Wirkungsmechanismus der Testsubstanzen zu. Ferner war in den meisten Fällen eine Diskriminierung der auf den gleichen Rezeptor einwirkenden Substanzen möglich. Die Analyse der Spikerate und verschiedener auf Bursts beruhender Messparameter machte deutlich, dass die Burstrate bei den extrazellulären Ableitungen auf Netzwerkebene den sensitivsten und verlässlichsten Parameter zum Nachweis der Substanzeffekte darstellte. Durch die Verwendung kortikaler Netzwerke unter optimierten Kulturbedingungen und einer auf das System abgestimmten Analysesoftware konnte die Reproduzierbarkeit und Sensitivität im Vergleich zu anderen Studien deutlich verbessert werden. Um die extrazelluläre Signalableitung von einer möglichst geringen Zellanzahl und damit einem überschaubaren zellulären Netzwerk auf Multielektrodenarrays zu ermöglichen, wurden die Oberflächeneigenschaften der Substrate so modifiziert, dass die Lokalisation der Zellsomata und das Auswachsen der Neurite einer geometrischen Kontrolle unterlag. Die kontrollierte Substratbeschichtung des Adhäsionspromotors Poly-D-Lysin in einem triangulären Muster konnte dabei durch die Methode des Mikrokontaktstempelns realisiert werden. Durch das kontrollierte Zellwachstum konnte die extrazelluläre Ableitung von Netzwerken einer geringen Zelldichte über einen Zeitraum von mehreren Wochen ermöglicht werden. Die Untersuchung struktureller und morphogenetischer Eigenschaften, sowie elektrophysiologische Untersuchungen der strukturierten Netzwerke bewiesen, dass die kontrollierte Substratbeschichtung sich nicht negativ auf das Wachstum, die Synaptogenese und die Funktionalität auswirkte.
Resumo:
Die Apoptose spielt eine entscheidende Rolle während der normalen Entwicklung des zentralen Nervensystems. Elektrische Aktivität und die Versorgung mit trophischen Faktoren sind ausschlaggebend für das Überleben von Neuronen. Um zu untersuchen, welche zellulären Prozesse die aktivitätsabhängige Apoptose in organotypischen Schnittkulturen des neugeborenen Neokortex beeinflussen, wurde in der vorliegenden Arbeit immunzytochemisch das Auftreten aktivierter Caspase-3, nach pharmakologischer Beeinflussung von Ionenkanälen und membranständigen Rezeptoren analysiert. Die Unterdrückung neuronaler Aktivität durch den Natriumionenkanalblocker TTX führte zu einem signifikanten Verlust kortikaler Neuronen. Ein ähnlicher Anstieg der Zahl apoptotischer Neurone konnte durch Applikation von Antagonisten ionotroper Glutamatrezeptoren, GABAA-Rezeptoren oder neuronaler Gap Junctions induziert werden. Jedoch konnte bei einigen Antagonisten die apoptosefördernde Wirkung erst nach längerer Einwirkung beobachtet werden. Im Weiteren wurde eine Methode etabliert, mit deren Hilfe eine Echtzeitanalyse der Apoptose kortikaler Neurone unter dem Entzug trophischer Faktoren in Gegenwart unterschiedlicher extrazellulärer Kaliumkonzentrationen ermöglicht wurde. Dazu wurden dissoziierte kortikale Kulturen mit dem pCaspase3-sensor Vektor transfiziert. Das durch dieses Plasmid codierte fluoreszente Protein wird Caspase-3 abhängig gespalten. In der vorliegenden Arbeit konnte gezeigt werden, dass der Caspase3-sensor spezifisch für die Aktivierung der Caspase-3 ist, und dass die Überlebensfähigkeit der transfizierten Neurone durch das Transfektionsprotokoll nicht beeinflusst wird.
Resumo:
Mit der Zielsetzung der vorliegenden Arbeit wurde die detailierten Analyse von Migrationsdynamiken epithelilaler Monolayer anhand zweier neuartiger in vitro Biosensoren verfolgt, der elektrischen Zell-Substrat Impedanz Spektroskopie (electrical cell-substrate impedance sensing, ECIS) sowie der Quarz Kristall Mikrowaage (quartz crystal microbalance, QCM). Beide Methoden erwiesen sich als sensitiv gegenüber der Zellmotilität und der Nanozytotoxizität.rnInnerhalb des ersten Projektes wurde ein Fingerprinting von Krebszellen anhand ihrer Motilitätsdynamiken und der daraus generierten elektrischen oder akkustischen Fluktuationen auf ECIS oder QCM Basis vorgenommen; diese Echtzeitsensoren wurdene mit Hilfe klassicher in vitro Boyden-Kammer Migrations- und Invasions-assays validiert. Fluktuationssignaturen, also Langzeitkorrelationen oder fraktale Selbstähnlichkeit aufgrund der kollektiven Zellbewegung, wurden über Varianz-, Fourier- sowie trendbereinigende Fluktuationsanalyse quantifiziert. Stochastische Langzeitgedächtnisphänomene erwiesen sich als maßgebliche Beiträge zur Antwort adhärenter Zellen auf den QCM und ECIS-Sensoren. Des weiteren wurde der Einfluss niedermolekularer Toxine auf die Zytoslelettdynamiken verfolgt: die Auswirkungen von Cytochalasin D, Phalloidin und Blebbistatin sowie Taxol, Nocodazol und Colchicin wurden dabei über die QCM und ECIS Fluktuationsanalyse erfasst.rnIn einem zweiten Projektschwerpunkt wurden Adhäsionsprozesse sowie Zell-Zell und Zell-Substrat Degradationsprozesse bei Nanopartikelgabe charackterisiert, um ein Maß für Nanozytotoxizität in Abhangigkeit der Form, Funktionalisierung Stabilität oder Ladung der Partikel zu erhalten.rnAls Schlussfolgerung ist zu nennen, dass die neuartigen Echtzeit-Biosensoren QCM und ECIS eine hohe Zellspezifität besitzen, auf Zytoskelettdynamiken reagieren sowie als sensitive Detektoren für die Zellvitalität fungieren können.
Resumo:
Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomolar and femtomolar levels, respectively. Besides hydrogel based experiments for detection of molecular analytes, long range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) was employed for detection of bacterial pathogens. The influence of capture efficiency of bacteria on surfaces and the profile of the probing field on sensor response were investigated. The potential of LRSP-FS with extended evanescent field is demonstrated for detection of pathogenic E. coli O157:H7 on sandwich immunoassays . LOD as low as 6 cfu mL-1 with a detection time of 40 minutes was achieved.rn
Resumo:
This thesis investigates metallic nanostructures exhibiting surface plasmon resonance for the amplification of fluorescence signal in sandwich immunoassays. In this approach, an analyte is captured by an antibody immobilized on a plasmonic structure and detected by a subsequently bound fluorophore labeled detection antibody. The highly confined field of surface plasmons originates from collective charge oscillations which are associated with high electromagnetic field enhancements at the metal surface and allow for greatly increased fluorescence signal from the attached fluorophores. This feature allows for improving the signal-to-noise ratio in fluorescence measurements and thus advancing the sensitivity of the sensor platform. In particular, the thesis presents two plasmonic nanostructures that amplify fluorescence signal in devices that rely on epifluorescence geometry, in which the fluorophore absorbs and emits light from the same direction perpendicular to the substrate surface.rnThe first is a crossed relief gold grating that supports propagating surface plasmon polaritons (SPPs) and second, gold nanoparticles embedded in refractive index symmetric environment exhibiting collective localized surface plasmons (cLSPs). Finite-difference time-domain simulations are performed in order to design structures for the optimum amplification of established Cy5 and Alexa Fluor 647 fluorophore labels with the absorption and emission wavelengths in the red region of spectrum. The design takes into account combined effect of surface plasmon-enhanced excitation rate, directional surface plasmon-driven emission and modified quantum yield for characteristic distances in immunoassays. Homebuilt optical instruments are developed for the experimental observation of the surface plasmon mode spectrum, measurements of the angular distribution of surface plasmon-coupled fluorescence light and a setup mimicking commercial fluorescence reading systems in epifluorescence geometry.rnCrossed relief grating structures are prepared by interference lithography and multiple copies are made by UV nanoimprint lithography. The fabricated crossed diffraction gratings were utilized for sandwich immunoassay-based detection of the clinically relevant inflammation marker interleukin 6 (IL-6). The enhancement factor of the crossed grating reached EF=100 when compared to a flat gold substrate. This result is comparable to the highest reported enhancements to date, for fluorophores with relatively high intrinsic quantum yield. The measured enhancement factor excellently agrees with the predictions of the simulations and the mechanisms of the enhancement are explained in detail. Main contributions were the high electric field intensity enhancement (30-fold increase) and the directional fluorescence emission at (4-fold increase) compared to a flat gold substrate.rnCollective localized surface plasmons (cLSPs) hold potential for even stronger fluorescence enhancement of EF=1000, due to higher electric field intensity confinement. cLSPs are established by diffractive coupling of the localized surface plasmon resonance (LSPR) of metallic nanoparticles and result in a narrow resonance. Due to the narrow resonance, it is hard to overlap the cLSPs mode with the absorption and emission bands of the used fluorophore, simultaneously. Therefore, a novel two resonance structure that supports SPP and cLSP modes was proposed. It consists of a 2D array of cylindrical gold nanoparticles above a low refractive index polymer and a silver film. A structure that supports the proposed SPP and cLSP modes was prepared by employing laser interference lithography and the measured mode spectrum was compared to simulation results.rn
Resumo:
BACKGROUND: Complete investigation of thrombophilic or hemorrhagic clinical presentations is a time-, apparatus-, and cost-intensive process. Sensitive screening tests for characterizing the overall function of the hemostatic system, or defined parts of it, would be very useful. For this purpose, we are developing an electrochemical biosensor system that allows measurement of thrombin generation in whole blood as well as in plasma. METHODS: The measuring system consists of a single-use electrochemical sensor in the shape of a strip and a measuring unit connected to a personal computer, recording the electrical signal. Blood is added to a specific reagent mixture immobilized in dry form on the strip, including a coagulation activator (e.g., tissue factor or silica) and an electrogenic substrate specific to thrombin. RESULTS: Increasing thrombin concentrations gave standard curves with progressively increasing maximal current and decreasing time to reach the peak. Because the measurement was unaffected by color or turbidity, any type of blood sample could be analyzed: platelet-poor plasma, platelet-rich plasma, and whole blood. The test strips with the predried reagents were stable when stored for several months before testing. Analysis of the combined results obtained with different activators allowed discrimination between defects of the extrinsic, intrinsic, and common coagulation pathways. Activated protein C (APC) predried on the strips allowed identification of APC-resistance in plasma and whole blood samples. CONCLUSIONS: The biosensor system provides a new method for assessing thrombin generation in plasma or whole blood samples as small as 10 microL. The assay is easy to use, thus allowing it to be performed in a point-of-care setting.
Resumo:
Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.
Resumo:
El objetivo de la presente tesis doctoral es el desarrollo de un nuevo concepto de biosensor óptico sin marcado, basado en una combinación de técnicas de caracterización óptica de interrogación vertical y estructuras sub-micrométricas fabricadas sobre chips de silicio. Las características más importantes de dicho dispositivo son su simplicidad, tanto desde el punto de vista de medida óptica como de introducción de las muestras a medir en el área sensible, aspectos que suelen ser críticos en la mayoría de sensores encontrados en la literatura. Cada uno de los aspectos relacionados con el diseño de un biosensor, que son fundamentalmente cuatro (diseño fotónico, caracterización óptica, fabricación y fluídica/inmovilización química) son desarrollados en detalle en los capítulos correspondientes. En la primera parte de la tesis se hace una introducción al concepto de biosensor, en qué consiste, qué tipos hay y cuáles son los parámetros más comunes usados para cuantificar su comportamiento. Posteriormente se realiza un análisis del estado del arte en la materia, enfocado en particular en el área de biosensores ópticos sin marcado. Se introducen también cuáles son las reacciones bioquímicas a estudiar (inmunoensayos). En la segunda parte se describe en primer lugar cuáles son las técnicas ópticas empleadas en la caracterización: Reflectometría, Elipsometría y Espectrometría; además de los motivos que han llevado a su empleo. Posteriormente se introducen diversos diseños de las denominadas "celdas optofluídicas", que son los dispositivos en los que se va a producir la interacción bioquímica. Se presentan cuatro dispositivos diferentes, y junto con ellos, se proponen diversos métodos de cálculo teórico de la respuesta óptica esperada. Posteriormente se procede al cálculo de la sensibilidad esperada para cada una de las celdas, así como al análisis de los procesos de fabricación de cada una de ellas y su comportamiento fluídico. Una vez analizados todos los aspectos críticos del comportamiento del biosensor, se puede realizar un proceso de optimización de su diseño. Esto se realiza usando un modelo de cálculo simplificado (modelo 1.5-D) que permite la obtención de parámetros como la sensibilidad y el límite de detección de un gran número de dispositivos en un tiempo relativamente reducido. Para este proceso se escogen dos de las celdas optofluídicas propuestas. En la parte final de la tesis se muestran los resultados experimentales obtenidos. En primer lugar, se caracteriza una celda basada en agujeros sub-micrométricos como sensor de índice de refracción, usando para ello diferentes líquidos orgánicos; dichos resultados experimentales presentan una buena correlación con los cálculos teóricos previos, lo que permite validar el modelo conceptual presentado. Finalmente, se realiza un inmunoensayo químico sobre otra de las celdas propuestas (pilares nanométricos de polímero SU-8). Para ello se utiliza el inmunoensayo de albumina de suero bovino (BSA) y su anticuerpo (antiBSA). Se detalla el proceso de obtención de la celda, la funcionalización de la superficie con los bioreceptores (en este caso, BSA) y el proceso de biorreconocimiento. Este proceso permite dar una primera estimación de cuál es el límite de detección esperable para este tipo de sensores en un inmunoensayo estándar. En este caso, se alcanza un valor de 2.3 ng/mL, que es competitivo comparado con otros ensayos similares encontrados en la literatura. La principal conclusión de la tesis es que esta tipología de dispositivos puede ser usada como inmunosensor, y presenta ciertas ventajas respecto a los actualmente existentes. Estas ventajas vienen asociadas, de nuevo, a su simplicidad, tanto a la hora de medir ópticamente, como dentro del proceso de introducción de los bioanalitos en el área sensora (depositando simplemente una gota sobre la micro-nano-estructura). Los cálculos teorícos realizados en los procesos de optimización sugieren a su vez que el comportamiento del sensor, medido en magnitudes como límite de detección biológico puede ser ampliamente mejorado con una mayor compactación de pilares, alcanzandose un valor mínimo de 0.59 ng/mL). The objective of this thesis is to develop a new concept of optical label-free biosensor, based on a combination of vertical interrogation optical techniques and submicron structures fabricated over silicon chips. The most important features of this device are its simplicity, both from the point of view of optical measurement and regarding to the introduction of samples to be measured in the sensing area, which are often critical aspects in the majority of sensors found in the literature. Each of the aspects related to the design of biosensors, which are basically four (photonic design, optical characterization, fabrication and fluid / chemical immobilization) are developed in detail in the relevant chapters. The first part of the thesis consists of an introduction to the concept of biosensor: which elements consists of, existing types and the most common parameters used to quantify its behavior. Subsequently, an analysis of the state of the art in this area is presented, focusing in particular in the area of label free optical biosensors. What are also introduced to study biochemical reactions (immunoassays). The second part describes firstly the optical techniques used in the characterization: reflectometry, ellipsometry and spectrometry; in addition to the reasons that have led to their use. Subsequently several examples of the so-called "optofluidic cells" are introduced, which are the devices where the biochemical interactions take place. Four different devices are presented, and their optical response is calculated by using various methods. Then is exposed the calculation of the expected sensitivity for each of the cells, and the analysis of their fabrication processes and fluidic behavior at the sub-micrometric range. After analyzing all the critical aspects of the biosensor, it can be performed a process of optimization of a particular design. This is done using a simplified calculation model (1.5-D model calculation) that allows obtaining parameters such as sensitivity and the detection limit of a large number of devices in a relatively reduced time. For this process are chosen two different optofluidic cells, from the four previously proposed. The final part of the thesis is the exposition of the obtained experimental results. Firstly, a cell based sub-micrometric holes is characterized as refractive index sensor using different organic fluids, and such experimental results show a good correlation with previous theoretical calculations, allowing to validate the conceptual model presented. Finally, an immunoassay is performed on another typology of cell (SU-8 polymer pillars). This immunoassay uses bovine serum albumin (BSA) and its antibody (antiBSA). The processes for obtaining the cell surface functionalization with the bioreceptors (in this case, BSA) and the biorecognition (antiBSA) are detailed. This immunoassay can give a first estimation of which are the expected limit of detection values for this typology of sensors in a standard immunoassay. In this case, it reaches a value of 2.3 ng/mL, which is competitive with other similar assays found in the literature. The main conclusion of the thesis is that this type of device can be used as immunosensor, and has certain advantages over the existing ones. These advantages are associated again with its simplicity, by the simpler coupling of light and in the process of introduction of bioanalytes into the sensing areas (by depositing a droplet over the micro-nano-structure). Theoretical calculations made in optimizing processes suggest that the sensor Limit of detection can be greatly improved with higher compacting of the lattice of pillars, reaching a minimum value of 0.59 ng/mL).
Resumo:
Polyelectrolyte multilayers (PEM) built by layer-by-layer technique have been extensively studied over the last years, resulting in a wide variety of current and potential applications. This technique can be used to construct thin films with different functionalities, or to functionalize surfaces with substantial different properties of those of the underlying substrates. The multilayering process is achieved by the alternate adsorption of oppositely charged polyelectrolytes. In this work we get advantage of the protein resistant property of the Poly (l-lysine)-graft-(polyethyleneglycol) to create protein patterns. Proteins can be immobilized on a surface by unspecific physical adsorption, covalent binding or through specific interactions. The first protein used in this work was laccase, a copper-containing redox enzyme that catalyse the oxidation of a broad range of polyphenols and aromatic substrates, coupled to the reduction of O2 to H2O without need of cofactors. Applications of laccases have been reported in food, pulp, paper, and textile industry, and also in biosensor development. Some uses require the immobilization of the enzyme on solid supports by adsorption, covalent attachment, entrapment, etc, on several substrates. Especially for biosensor development, highly active, stable and reproducible immobilization of laccase is required.
Resumo:
The field of optical label free biosensors has become a topic of interest during past years, with devices based on the detection of angular or wavelength shift of optical modes [1]. Common parameters to characterize their performance are the Limit of Detection (LOD, defined as the minimum change of refractive index upon the sensing surface that the device is able to detect, and also BioLOD, which represents the minimum amount of target analyte accurately resolved by the system; with units of concentration (common un its are p pm, ng/ml, or nM). LOD gives a first value to compare different biosensors, and is obtained both theoretically (using photonic calculation tools), and experimentally,covering the sensing area with fluids of different refractive indexes.
Resumo:
El objetivo de esta tesis es el desarrollo y caracterización de biosensores ópticos sin marcado basados en celdas sensoras biofotónicas (BICELLs). Éstas son un nuevo concepto de biosensor desarrollado por el grupo de investigación y consiste en la combinación de técnicas de interrogación vertical, junto a estructuras fotónicas producidas usando métodos de micro- y nanofabricación. Varias conclusiones son extraídas de este trabajo. La primera, que se ha definido una BICELL estándar basada en interferómetros Fabry-Perot (FP). Se ha demostrado su capacidad para la comparación de rendimiento entre BICELLs estructuradas y para la realización de inmunoensayos de bajo coste. Se han estudiado diferentes técnicas de fabricación disponibles para la producción de BICELLs. Se determinó que la litografía de contacto a nivel de oblea produce estructuras de bajo coste, reproducibles y de alta calidad. La resolución alcanzada ha sido de 700 nm. El estudio de la respuesta a inmunoensayos de las BICELLs producidas se ha desarrollado en este trabajo. Se estudió la influencia de BICELLs basadas en diferentes geometrías y tamaños. De aquí resulta un nuevo enfoque para predecir el comportamiento de respuesta para la detección biológica de cualquier biosensor óptico estructurado, relacionando su superficie efectiva y su sensibilidad óptica. También se demostró una técnica novedosa y de bajo coste para la caracterización experimental de la sensibilidad óptica, basada en el depósito de películas ultradelgadas. Finalmente, se ha demostrado el uso de BICELLs desarrolladas en esta tesis, en la detección de aplicaciones reales, tales como hormonas, virus y proteínas. ABSTRACT The objective of this thesis is the development and characterization of optical label-free biosensors based on Bio-Photonic sensing Cells (BICELLs). BICELL is a novel biosensor concept developed by the research group, and it consists of a combination of vertical interrogation optical techniques and photonic structures produced by using micro- and nano-fabrication methods. Several main conclusions are extracted from this work. Firstly, a standard BICELL is defined based on FP interferometers, which demonstrated its capacity for accomplishing performance comparisons among different structured BICELLs, as well as to achieve low-cost immunoassays. Different available fabrication techniques were studied for BICELL manufacturing. It is found that contact lithography at wafer scale produce cost-effective, reproducible and high quality structures. The resolution achieved was 700 nm. Study on the response of developed BICELLs to immunoassays is performed within this work. It is therefore studied the influence of BICELLs based on different geometries and sizes in the immunoassay, which resulted in a new approach to predict the biosensing behaviour of any structured optical biosensor relating to its effective surface and optical sensitivity. Also, it is demonstrated a novel and low-cost characterization technique of the experimental optical sensitivity, based on ultrathin-film deposition. Finally, it is also demonstrated the capability of using the developed BICELLs in this thesis for real applications detection of hormones, virus and proteins.
Resumo:
El diagnóstico y detección temprana de enfermedades son clave para reducir la tasa de mortalidad, las hospitalizaciones de larga duración y el desaprovechamiento de recursos. En los últimos años se ha impulsado, mediante un aumento de la financiación, el desarrollo de nuevos biosensores de bajo coste capaces de detectar y cuantificar cantidades muy pequeñas de especies biológicas de una forma barata y sencilla. El trabajo presentado en esta Tesis Doctoral describe la investigación llevada a cabo en el desarrollo de sensores gravimétricos basados en resonadores de ondas acústicas de volumen (BAW) de estructura maciza (SMR). Los dispositivos emplean películas delgadas de A1N como material piezoeléctrico y operan en modo de cizalladura, para así poder detectar especies biológicas en medio líquido. El principio de funcionamiento de estos sensores se basa en la variación que experimenta la frecuencia de resonancia al quedar una pequeña masa adherida a su superficie. Necesitan operar en modo de cizalladura para que su resonancia no se atenúe al trabajar en medio líquido, así como ofrecer una superficie capaz de ser funcionalizada específicamente para la especie biológica a detectar. El reto planteado en esta tesis requiere un acercamiento pluridisciplinar al problema que incluye el estudio de los diferentes materiales que constituyen la estructura multicapa que forma un SMR, el diseño y fabricación del dispositivo y del sistema de fluídica, la funcionalización bioquímica de la superficie del sensor, la demostración de la capacidad de detección de especies biológicas y finalmente el diseño y fabricación de la electrónica asociada para la detección de la señal eléctrica. Todas esas tareas han sido abordadas en las distintas etapas del desarrollo de esta tesis y las contribuciones más relevantes se describen en el documento. En el campo de desarrollo de los materiales, se propone un proceso en dos etapas para la pulverización reactiva de capas de A1N que contengan microcristales inclinados capaces de excitar el modo de cizalladura. Se caracteriza la velocidad acústica del modo de cizalladura en todos los materiales que componen la estructura, con el fin de poder obtener un diseño más adecuado del reflector acústico. Se propone un nuevo tipo de material aislante de alta impedancia acústica consistente en capas de W03 pulverizadas que presenta ciertas ventajas tecnológicas frente a las capas convencionales de Ta205. Respecto del diseño del transductor, se estudia la influencia que tienen los con tactos eléctricos extendidos del resonador necesarios para poder adaptar el sistema de fluídica a la estructura. Los resultados indican que es necesario trabajar sobre sustratos aislantes (tanto el soporte como el espejo acústico) para evitar efectos parásitos asociados al uso de capas metálicas bajo los electrodos del resonador que dañan su resonancia. Se analiza la influencia de las diferentes capas del dispositivo en el coeficiente de temperatura de la frecuencia (TCF) del resonador llegando a la conclusión de que las dos últimas capas del reflector acústico afectan significativamente al TCF del SMR, pudiendo reducirse ajusfando adecuadamente sus espesores. De acuerdo con los resultados de estos estudios, se han diseñado finalmente resonadores SMR operando a f .3 GHz en modo de cizalladura, con un área activa de 65000 /xm2, contactos eléctricos que se extienden f .7 mm y factores de calidad en líquido de f 50. Las extensiones eléctricas permiten adaptar el resonador a un sistema de fluídica de metacrilato. Para la detección de especies biológicas se realiza un montaje experimental que permite circular 800 ¡A por la superficie del sensor a través de un circuito cerrado que trabaja a volumen constante. La circulación de soluciones iónicas sobre el sensor descubierto pone de manifiesto que las altas frecuencias de operación previenen los cortocircuitos y por tanto el aislamiento de los electrodos es prescindible. Se desarrolla un protocolo ad-hoc de funcionalización basado en el proceso estándar APTESGlutaraldehído. Se proponen dos alternativas novedosas para la funcionalización de las áreas activas del sensor basadas en el uso de capas de oxidación de Ir02 y su activación a través de un plasma de oxígeno que no daña al dispositivo. Ambos procesos contribuyen a simplificar notablemente la funcionalización de los sensores gravimétricos. Se utilizan anticuerpos y aptámeros como receptores para detectar trombina, anticuerpo monoclonal IgG de ratón y bacteria sonicadas. Una calibración preliminar del sensor con depósitos de capas finas de Si02 de densidad y espesor conocidos permite obtener una sensibilidad de 1800 kHz/pg-cm2 y un límite de detección of 4.2 pg. Finalmente se propone el prototipo de un circuito electrónico de excitación y lectura de bajo coste diseñado empleando teoría de circuitos de microondas. Aunque su diseño y funcionamiento admite mejoras, constituye la última etapa de un sistema completo de bajo coste para el diagnóstico de especies biológicas basado en resonadores SMR de A1N. ABSTRACT Early diagnosis and detection of diseases are essential for reducing mortality rate and preventing long-term hospitalization and waste of resources. These requirements have boosted the efforts and funding on the research of accurate and reliable means for detection and quantification of biological species, also known as biosensors. The work presented in this thesis describes the development and fabrication of gravimetric biosensors based on piezoelectric AlN bulk acoustic wave (BAW) solidly mounted resonators (SMRs) for detection of biological species in liquid media. These type of devices base their sensing principles in the variation that their resonant frequency suffers when a mass is attached to their surface. They need to operate in the shear mode to maintain a strong resonance in liquid and an adequate functionalisation of their sensing area to guarantee that only the targeted molecules cause the shift. The challenges that need to be overcome to achieve piezoelectric BAW resonators for high sensitivity detection in fluids require a multidisciplinary approach, that include the study of the materials involved, the design of the device and the fluidic system, the biochemical functionalisation of the active area, the experimental proof-of-concept with different target species and the design of an electronic readout circuit. All this tasks have been tackled at different stages of the thesis and the relevant contributions are described in the document. In the field of materials, a two-stage sputtering deposition process has been developed to obtain good-quality AlN films with uniformly tilted grains required to excite the shear mode. The shear acoustic velocities of the materials composing the acoustic reflector have been accurately studied to ensure an optimum design of the reflector stack. WO3 sputtered films have been proposed as high acoustic impedance material for insulating acoustic reflectors. They display several technological advantages for the processing of the resonators. Regarding the design, a study of the influence of the electrical extensions necessary to fit a fluidic system on the performance of the devices has been performed. The results indicate that high resistivity substrates and insulating reflectors are necessary to avoid the hindering of the resonance due to the parasitic effects induced by the extensions. The influence of the different layers of the stack on the resultant TCF of the SMRs has also been investigated. The two layers of the reflector closer to the piezoelectric layer have a significant influence on the TCF, which can be reduced by modifying their thicknesses accordingly. The data provided by these studies has led to the final design of the devices, which operate at 1.3 GHz in the shear mode and display an active area of 65000 /xm2 and electrical extensions of 1.7 mm while keeping a Qahear=150 in liquid. The extensions enable to fit a custom-made fluidic system made of methacrylate. To perform the biosensing experiments, an experimental setup with a liquid closed circuit operating at constant flow has been developed. Buffers of ionic characteristics have been tested on non-isolated devices, revealing that high operation frequencies prevent the risk of short circuit. An ad-hoc functionalisation protocol based on the standard APTES - Glutaraldehyde process has been developed. It includes two new processes that simplify the fabrication of the transducers: the use of IrO2 as oxidation layer and its functionalisation through an O2 plasma treatment that does not damage the resonators. Both antibodies and aptamers are used as receptors. In liquid sensing proof-of-concept experiments with thrombin, IgG mouse monoclonal antibody and sonicated bacteria have been displayed. A preliminary calibration of the devices using SiO2 layers reveals a sensitivity of 1800 kHz/pg-cm2 and a limit of detection of 4.2 pg. Finally, a first prototype of a low-cost electronic readout circuit designed using a standard microwave approach has been developed. Although its performance can be significantly improved, it is an effective first approach to the final stage of a portable low-cost diagnostic system based on shear mode AlN SMRs.
Resumo:
Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.