951 resultados para ADIPOSE-DERIVED STEM CELL
Resumo:
Primary systemic amyloidosis (AL amyloidosis) continues to have a very poor prognosis. Most therapeutic strategies remain unsatisfactory. Conventional chemotherapy is known to offer at best only moderate efficacy. Several studies have yielded higher complete response rates after high-dose chemotherapy and autologous stem cell transplantation (ASCT) in addition to improving outcomes in a subgroup of patients. However, the superiority of an intensive approach in AL amyloidosis has not been confirmed in a randomised trial. The precise role of ASCT remains unclear. We report our experience in 16 patients diagnosed with AL amyloidosis and treated in a multidisciplinary approach with high-dose melphalan and ASCT. Median age was 59 (39-71) years. The kidneys were predominantly affected in 75% of cases; two or more organs were affected in 38%. Median time from diagnosis to transplantation was 2 (1-4) months. Three patients (19%) developed acute renal failure and required transient dialysis. Transplant-related mortality was 6% after 100 days. Haematological complete response (CR) was obtained in nine (56%) and organ response in six (38%) patients. Nine out of 12 patients (75%) with kidney involvement exhibited a sustained clinical benefit at 12 months. Half of all the patients (n = 8) were alive after a median follow-up of 33 months, including two in continuous CR. This suggests that high-dose chemotherapy and ASCT are still valid treatment options in AL amyloidosis and that a significant number of patients with renal involvement might benefit from this approach.
Resumo:
The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.
Resumo:
Background We previously reported the results of a phase II study for patients with newly diagnosed primary central nervous system lymphoma treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and response-adapted whole-brain radiotherapy (WBRT). Now, we update the initial results. Patients and methods From 1999 to 2004, 23 patients received high-dose methotrexate. In case of at least partial remission, high-dose busulfan/thiotepa (HD-BuTT) followed by aPBSCT was carried out. Patients refractory to induction or without complete remission after HD-BuTT received WBRT. Eight patients still alive in 2011 were contacted and Mini-Mental State Examination (MMSE) and the European Organisation for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 were carried out. Results Of eight patients still alive, median follow-up is 116.9 months. Only one of nine irradiated patients is still alive with a severe neurologic deficit. In seven of eight patients treated with HD-BuTT, health condition and quality of life are excellent. MMSE and QLQ-C30 showed remarkably good results in patients who did not receive WBRT. All of them have a Karnofsky score of 90%-100%. Conclusions Follow-up shows an overall survival of 35%. In six of seven patients where WBRT could be avoided, no long-term neurotoxicity has been observed and all patients have an excellent quality of life.
Resumo:
Caspofungin at standard dose was evaluated as first-line monotherapy of mycologically documented probable/proven invasive aspergillosis (IA) (unmodified European Organisation for Research and Treatment of Cancer/Mycosis Study Group criteria) in allogeneic hematopoietic SCT patients. The primary efficacy end point was complete or partial response at end of caspofungin treatment. Response at week 12, survival and safety were additional end points. Enrollment was stopped prematurely because of low accrual, with 42 enrolled and 24 eligible, giving the study a power of 85%. Transplant was from unrelated donors in 16 patients; acute or chronic GVHD was present in 15. In all, 12 patients were neutropenic (<500/microl) at baseline, 10 received steroids and 16 calcineurin inhibitors or sirolimus. Median duration of caspofungin treatment was 24 days. At the end of caspofungin therapy, 10 (42%) patients had complete or partial response (95% confidence interval: 22-63%); 1 (4%) and 12 (50%) had stable and progressing disease, respectively; one was not evaluable. At week 12, eight patients (33%) had complete or partial response. Survival rates at week 6 and 12 were 79 and 50%, respectively. No patient had a drug-related serious adverse event or discontinued because of toxicity. Caspofungin first-line therapy was effective and well tolerated in allogeneic hematopoietic SCT patients with mycologically documented IA.
Resumo:
Background: Mantle cell lymphoma (MCL) is a rare subtype (3-9%) of Non Hodgkin Lymphoma (NHL) with a relatively poor prognosis (5-year survival < 40%). Although consolidation of first remission with autologous stem cell transplantation (ASCT) is regarded as "golden standard", less than half of the patients may be subjected to this intensive treatment due to advanced age and co-morbidities. Standard-dose non-myeloablative radioimmunotherapy (RIT) seems to be a very efficient approach for treatment of certain NHL. However, there are almost no data available on the efficacy and safety of RIT in MCL. Methods and Patients: In the RIT-Network, a web-based international registry collecting real observational data from RIT-treated patients, 115 MCL patients treated with ibritumomab tiuxetan were recorded. Most of the patients were elderly males with advanced stage of the disease: median age - 63 (range 31-78); males - 70.4%, stage III/IV - 92%. RIT (i.e. application of ibritumomab tiuxetan) was a part of the first line therapy in 48 pts. (43%). Further 38 pts. (33%) received ibritumomab tiuxetan after two previous chemotherapy regimens, and 33 pts. (24%) after completing 3-8 lines. In 75 cases RIT was applied as a consolidation of chemotherapy induced response; the rest of the patients received ibritumomab tiuxetan because of relapse/refractory disease. At the moment follow up data are available for 74 MCL patients. Results: After RIT the patients achieved high response rate: CR 60.8%, PR 25.7%, and SD 2.7%. Only 10.8% of the patients progressed. For survival analysis many data had to be censored since the documentation had not been completed yet. The projected 3-year overall survival (OAS, fig.1 - image 001.gif) after radioimmunotherapy was 72% for pts. subjected to RIT consolidation versus 29% for those treated in relapse/refractory disease (p=0.03). RIT was feasible for almost all patients; only 3 procedure-related deaths were reported in the whole group. The main adverse event was hematological toxicity (grade III/IV cytopenias) showing a median time of recovery of Hb, WBC and Plt of 45, 40 and 38 days respectively. Conclusion: Standard-dose non-myeloablative RIT is a feasible and safe treatment modality, even for elderly MCL pts. Consolidation radioimmunotherapy with ibritumomab tiuxetan may prolong survival of patients who achieved clinical response after chemotherapy. Therefore, this consolidation approach should be considered as a treatment strategy for those, who are not eligible for ASCT. RIT also has a potential role as a palliation therapy in relapsing/resistant cases.
Resumo:
The telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals. In this review, we describe results of recent flow FISH studies in patients with selected hematopoietic stem cell-associated disorders: chronic myelogenous leukemia (CML) and several bone marrow failure syndromes. CML is characterized by a marked expansion of myeloid Philadelphia chromosome positive (Ph+) cells. Nevertheless, nonmalignant (Ph-) HSCs typically coexist in the bone marrow of CML patients. We analyzed the telomere length in > 150 peripheral blood leukocytes (PBLs) and bone marrow samples of patients with CML as well as samples of Ph- T-lymphocytes. Compared to normal controls, the overall telomere fluorescence in PBLs of patients with CML was significantly reduced. However, no telomere shortening was observed in Ph- T-lymphocytes. Patients in late chronic phase (CP) had significantly shorter telomeres than those assessed earlier in CP. Our data suggest that progressive telomere shortening is correlated with disease progression in CML. Within the group of patients with bone marrow failure syndromes, we only found significantly shortened telomeres (compared to age-adjusted controls) in granulocytes from patients with aplastic anemia (AA). Strikingly, the telomere length in granulocytes from AA patients who had recovered after immunosuppressive therapy (recAA) did not differ significantly from controls, whereas untreated patients and nonresponders with persistent severe pancytopenia (sAANR) showed marked and significant telomere shortening compared to healthy donors and patients with recAA. Furthermore, an inverse correlation between age-adjusted telomere length and peripheral blood counts was found in support of a model in which the degree of cytopenia and the amount of telomere shortening are correlated. These results support the concept of extensive proliferation of HSCs in subgroups of AA patients and suggest a potential use of telomere-length measurements as a prognostic tool in this group of disorders as well.
Resumo:
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche.
Resumo:
The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists.
Resumo:
Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans.
Resumo:
There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
Resumo:
Although tumor heterogeneity is widely accepted, the existence of cancer stem cells (CSCs) and their proposed role in tumor maintenance has always been challenged and remains a matter of debate. Recently, a path-breaking chapter was added to this saga when three independent groups reported the in vivo existence of CSCs in brain, skin and intestinal tumors using lineage-tracing and thus strengthens the CSC concept; even though certain fundamental caveats are always associated with lineage-tracing approach. In principle, the CSC hypothesis proposes that similar to normal stem cells, CSCs maintain self renewal and multilineage differentiation property and are found at the central echelon of cellular hierarchy present within tumors. However, these cells differ from their normal counterpart by maintaining their malignant potential, alteration of genomic integrity, epigenetic identity and the expression of specific surface protein profiles. As CSCs are highly resistant to chemotherapeutics, they are thought to be a crucial factor involved in tumor relapse and superficially appear as the ultimate therapeutic target. However, even that is not the end; further complication is attributed by reports of bidirectional regeneration mechanism for CSCs, one from their self-renewal capability and another from the recently proposed concept of dynamic equilibrium between CSCs and non-CSCs via their interconversion. This phenomenon has currently added a new layer of complexity in understanding the biology of tumor heterogeneity. In-spite of its associated controversies, this area has rapidly emerged as the center of attention for researchers and clinicians, because of the conceptual framework it provides towards devising new therapies.
Resumo:
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.
Resumo:
Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.