449 resultados para ADENYLYL-CYCLASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in beta-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet alpha-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in beta-cells and not in alpha-cells. Receptor activity, measured as cellular cAMP production after exposing islet beta-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified alpha-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in beta-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat beta-cells causes cAMP production required for insulin release, while adenylate cyclase in alpha-cells is positively regulated by GIP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multicomponent indicator displacement assay ( MIDA) based on an organometallic receptor and three dyes can be used for the identification and quantification of nucleotides in aqueous solution at neutral pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide-Y (NPY) is a 36-amino acid peptide known to inhibit glucose-stimulated insulin secretion in various animal models in vitro and in vivo. NPY is thought to be one of the mediators of sympathetic action in the pancreas through nerve endings surrounding the islets, and it has recently been shown to be synthesized within the islets of Langerhans. To elucidate the potential role of NPY in the endocrine pancreas, we studied the expression and regulation of NPY secretion in a rat insulinoma cell line (INS-1). NPY mRNA and peptide are highly expressed and secreted by INS-1 cells. NPY levels were determined by a sensitive and specific two-site amplified enzyme-linked immunosorbent assay. Incubation of INS-1 cells with various glucose concentrations did not modify NPY secretion; however, stimulation of adenylate cyclase by forskolin induced a dose- and time-dependent increase in NPY release in the medium. The glucagon-like peptide-I-(7-36) amide (GLP-1), a known gluco-incretin in humans, induced at low concentration (10(-9) M) a similar expression of NPY mRNA and peptide secretion in INS-1 cells. On the other hand, the inhibition of cAMP accumulation by the alpha 2-adrenergic agonist clonidine decreased NPY secretion. In conclusion, 1) high levels of gene expression and secretion of NPY are found in a rat insulinoma cell line (INS-1). 2) Accumulation of cAMP induced by forskolin or a gluco-incretin (GLP-1) induces a further increase in NPY gene expression and release. 3) NPY secretion is not modulated by low or high glucose concentrations in the medium. 4) Induction of NPY, a known inhibitor of insulin secretion, may represent a novel counterregulatory mechanism of insulin secretion, limiting the stimulatory effect of GLP-1 on insulin secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) production of nitric oxide (NO) has been mostly associated with so-called nitrosative stress or interaction with superoxide anion. However, recent investigations have indicated that, as for the other isoenzymes producing NO, guanylyl cyclase (GC) is a very sensitive target of iNOS activity. To further investigate this less explored signaling, the NO-cyclic guanosine 3'-5'-monophosphate (NO-cGMP)-induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation on serine 239 was investigated in human embryonic kidney 293 cells (HEK cells). First, the expression and activity of alpha2 and beta1 NO-sensitive GC subunits was determined by Western blot analysis, reverse transcription-polymerase chain reaction and NO donors administration. Then, the expression of a functional cGMP-dependent protein kinase I (PKGI) was verified by addition of 8-Br-cGMP followed by determination of phosphorylation of VASP on serine 239. Finally, iNOS activation of this signaling pathway was characterized after transfection of HEK cells with human iNOS cDNA. Altogether our data show that iNOS-derived NO activates endogenous NO-sensitive GC and leads to VASP phosphorylation in HEK cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Le retard de croissance intra-utérin (RCIU) est défini comme une incapacité du foetus à atteindre son plein potentiel de croissance. C'est une complication fréquente (affectant ~8% des grossesses), associée à un risque accru de mortalité et morbidité périnatales et de maladies chroniques à l'âge adulte, telles que les maladies coronariennes, l'hypertension, ou le diabète. Une croissance foetale adéquate est déterminée principalement par la disponibilité en oxygène et nutriments apportés au foetus par la circulation ombilico-placentaire. Chez l'homme, le tonus vasculaire ombilical est régulé majoritairement par la voie du monoxyde d'azote (NO)/GMPc. Nous avons émis l'hypothèse que le RCIU pourrait être associé à des altérations dans la régulation de la circulation ombilicale, en particulier dans la voie du NO/GMPc. Méthodes: Cette étude a été conçue pour identifier dans des cordons ombilicaux, les changements structurels, fonctionnels et moléculaires survenant en cas de RCIU, en particulier dans la veine om-bilicale. Résultats: De façon générale, le diamètre du cordon ombilical était significativement réduit chez les nouveau-nés avec RCIU par rapport aux contrôles. Les mesures histomorphométriques ont mis en évidence une diminution significative de la surface transversale totale ainsi que de muscle lisse dans la veine ombilicale en cas de RCIU. Les études pharmacologiques effectuées sur des anneaux vasculaires de veines ombilicales ont montré une diminution de la tension maximale induite par des vasoconstricteurs chez les garçons avec RCIU, et une réduction significative de la relaxation induite par le NO chez les filles avec RCIU. Cette altération de la relaxation s'accompagne de modifications de plusieurs composants de la voie du NO/GMPc au niveau du muscle lisse de la veine ombilicale des filles avec RCIU. Enfin l'addition d'un inhibiteur non-spécifique des phosphodiesterases (PDEs) a permis d'améliorer la réponse au NO dans tous les groupes et surtout de compenser la réduction de la relaxation induite par le NO chez les filles avec RCIU. Conclusion: Cette étude a permis de mettre en évidence des modifications structurelles dans le cordon ombilical de nouveau-nés présentant un RCIU, ainsi que des changements fonctionnels et moléculaires dans la veine ombilicale, en particulier dans la voie du NO/GMPc, qui pourraient contribuer au développement du RCIU. L'effet bénéfique de l'inhibition des PDEs sur la relaxation suggère qu'elles pourraient constituer des cibles thérapeutiques potentielles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF(-)GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF(-)GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in 'equivalent-light'' scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate genes differentially expressed in ovaries from lean (wild type) and obese (ob/ob) female mice and cyclic AMP production in both groups.METHODS: The expression on messenger RNA levels of 84 genes concerning obesity was analyzed through the PCR array, and cyclic AMP was quantified by the enzyme immunoassay method.RESULTS: The most downregulated genes in the Obesity Group included adenylate cyclase-activating polypeptide type 1, somatostatin, apolipoprotein A4, pancreatic colipase, and interleukin-1 beta. The mean decrease in expression levels of these genes was around 96, 40, 9, 4.2 and 3.6-fold, respectively. On the other hand, the most upregulated genes in the Obesity Group were receptor (calcitonin) activity-modifying protein 3, peroxisome proliferator activated receptor alpha, calcitonin receptor, and corticotropin-releasing hormone receptor 1. The increase means in the expression levels of such genes were 2.3, 2.7, 4.8 and 6.3-fold, respectively. The ovarian cyclic AMP production was significantly higher in ob/ob female mice (2,229±52 fMol) compared to the Control Group (1,814±45 fMol).CONCLUSIONS: Obese and anovulatory female mice have reduced reproductive hormone levels and altered ovogenesis. Several genes have their expression levels altered when leptin is absent, especially adenylate cyclase-activating polypeptide type 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afferent nerves carrying signals from mechanoreceptors in the aortic arch and carotid sinus terminate predominantly in the nucleus tractus solitarii (NTS). Signal transduction and neurotransmission in the NTS are critical for central cardiovascular reflex control, but little was known about either until the late 1970's. None of the numerous neuroactive chemicals found in the NTS had met strict criteria as a neurotransmitter in the baroreflex arc until data suggested that the excitatory amino acid L-glutamate (GLU) might be released from baroreceptor afferent terminals in the NTS. In anesthetized animals microinjection into the NTS of GLU, which can be demonstrated in terminals in the NTS, produces cardiovascular responses like those seen with activation of the baroreceptor reflex. Similar responses occur in awake animals if the chemoreceptor reflex is eliminated; otherwise, in conscious animals responses mimic those of chemoreceptor reflex activation. GLU is released in the NTS upon selective activation of the baroreceptor, and possibly the chemoreceptor, reflex. Responses to selective agonists as well as baroreflex responses are eliminated by GLU antagonists microinjected into the NTS. Non-NMDA (N-methyl-D-aspartic acid) receptors seem to predominate at primary baroreceptor synapses in the NTS while NMDA receptors may be involved at later synapses. Although inhibition of soluble guanylate cyclase attenuates responses to ionotropic glutamate agonists in the NTS, nitric oxide does not seem to play a role in glutamate transmission in the NTS. GLU may also participate in transmission at cardiovascular neurons beyond the NTS. For example, a role has been suggested for GLU in the ventrolateral medulla and spinal cord. Work continues concerning GLU signal transduction and mechanisms that modulate that transduction both at the NTS and at other cardiovascular nuclei

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous data from our laboratory have indicated that nitric oxide (NO) acting at the presynaptic level increases the amplitude of muscular contraction (AMC) of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat). Intra-arterial injection of NO (0.75-1.5 mg/kg) induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz), but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylin and uroguanylin are peptides that bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat-stable bacteria enterotoxins. In the kidney, both of them have well-documented natriuretic and kaliuretic effects. Since atrial natriuretic peptide (ANP) also has a natriuretic effect mediated by cGMP, experiments were designed in the isolated perfused rat kidney to identify possible synergisms between ANP, guanylin and uroguanylin. Inulin was added to the perfusate and glomerular filtration rate (GFR) was determined at 10-min intervals. Sodium was also determined. Electrolyte dynamics were measured by the clearance formula. Guanylin (0.5 µg/ml, N = 12) or uroguanylin (0.5 µg/ml, N = 9) was added to the system after 30 min of perfusion with ANP (0.1 ng/ml). The data were compared at 30-min intervals to a control (N = 12) perfused with modified Krebs-Hanseleit solution and to experiments using guanylin and uroguanylin at the same dose (0.5 µg/ml). After previous introduction of ANP in the system, guanylin promoted a reduction in fractional sodium transport (%TNa+, P<0.05) (from 78.46 ± 0.86 to 64.62 ± 1.92, 120 min). In contrast, ANP blocked uroguanylin-induced increase in urine flow (from 0.21 ± 0.01 to 0.15 ± 0.007 ml g-1 min-1, 120 min, P<0.05) and the reduction in fractional sodium transport (from 72.04 ± 0.86 to 85.19 ± 1.48, %TNa+, at 120 min of perfusion, P<0.05). Thus, the synergism between ANP + guanylin and the antagonism between ANP + uroguanylin indicate the existence of different subtypes of receptors mediating the renal actions of guanylins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.