940 resultados para ADENOSINE-A1-RECEPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co-III complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co-III:II 11 redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by Na-23 and Li-7 NMR spectroscopy and electrospray mass spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The frequency of the Taq I A alleles (A1 and A2) of the D2 dopamine receptor (DRD2) gene was examined in Caucasian post-traumatic stress disorder (PTSD) patients and controls. Results: In 91 PTSD patients, the frequency of the A1 allele was higher (P = 6.12 x 10(-3)) than in the 51 controls. In the 38 PTSD harmful drinkers (greater than or equal to60 g alcohol/day), A1 allelic frequency was higher (P = 3.91 x 10(-2)) than in the 53 non-harmful drinkers (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI- secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl- secretion and inhibit amiloride-sensitive Na+ transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na+ channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl- channel blocker 4,4'diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl- transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N-2,2'-O-dibutyrylguanosine 3',5-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl-. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the basis for immunodominant or public TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of triazine-appended macrocyclic complexes has been investigated as potential hydrogen bonding receptors for complementarily disposed heterocycles. Cocrystallization of a melamine-appended azacyclam complex of Cull has been achieved with barbitone, the barbiturate anion and thymine. In each case, a complementary DAD/ADA hydrogen bonding motif between the melamine group and the heterocycle has been identified by X-ray crystallography. Electrochemical studies of the copper macrocycles in both nonaqueous and aqueous solution show anodic shifts of the CuII/I redox couple of more than 60 mV upon addition of guest molecules with matching H-bonding motifs. The Zn-II analogues have been synthesized via transmetalation of the Cull complex, and their guest binding properties investigated by NMR spectroscopy. H-1 NMR shifts of up to 0.8 ppm were observed upon addition of guest, and stability constants are similar to those obtained electrochemically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A adenosina é um nucleósido ubíquo envolvido na regulação de controlo do tónus vascular do tecido cavernoso, desempenhando um papel importante na fisiopatologia da Disfunção Erétil (DE) resistente aos fármacos relaxantes musculares clássicos. Apesar da importância comprovada dos recetores da adenosina na fisiopatologia da DE no homem, pouca informação é conhecida no que diz respeito à expressão e localização dos recetores purinérgicos no Tecido Cavernoso de Ratazana (TCR). Neste trabalho avaliou-se o fenótipo dos recetores purinérgicos responsáveis pela regulação do tónus do tecido erétil de ratazana por imunofluorescência indireta aplicada à microscopia confocal em co-culturas de células endoteliais e musculares lisas do TCR. Para além da caracterização imunofenotípica, desenvolveu-se uma técnica que permite diferenciar funcionalmente em tempo real (por microscopia confocal funcional) células musculares lisas e células endoteliais isoladas de TCR em co-cultura marcadas com a sonda fluorescente Fluo-4NW. Esta técnica permite distinguir cada um dos subtipos celulares mediante o padrão e a magnitude das oscilações dos níveis intracelulares de Ca2+ ([Ca2+]i) em resposta ao ATP (agonista P2) e à fenilefrina (PE, agonista α-adrenérgico). Nas células musculares lisas, observou-se uma resposta mais acentuada ao agonista α-adrenérgico, PE, e uma resposta menos significativa ao ATP. O contrário foi observado relativamente às células endoteliais. A incubação das células musculares lisas e endoteliais com ATP (300 μM) causou um aumento dos níveis de [Ca2+]i. O efeito do ATP (300 μM) parece envolver a ativação de recetores dos subtipos P2X1 e P2X3 sensíveis ao bloqueio com NF023 (3μM) e A317491 (100 nM), respetivamente. Já o aumento dos níveis [Ca2+]i produzido pelo ADP (300 μM) parece envolver a ativação de recetores P2Y1, P2Y12 e P2Y13 mediante o antagonismo produzido pelos antagonistas MRS 2179 (0,3μM), AR-C66096 (0,1 μM) e MRS 2211 (10μM), respetivamente. Os dois tipos celulares expressam imunorreatividade contra recetores A2A, A2B, P2X1, P2X3, P2Y1, P2Y12 e P2Y13.