996 resultados para ACTIVATION-ENERGIES
Resumo:
We report K/pi fluctuations from Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. K/pi fluctuations in central collisions show little dependence on incident energy and are on the same order as those from NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at s(NN)=12.3 and 17.3 GeV. We report results for the collision centrality dependence of K/pi fluctuations and results for charge-separated fluctuations. We observe that the K/pi fluctuations scale with the charged particle multiplicity density.
Resumo:
New data for the (6)He + (9)Be reaction at E(1ab) = 16.2 and 21.3 MeV have been taken and analyzed. The effect of the collective couplings to the excited states of the target has been studied by means of coupled-channels calculations, using a double-folding potential for the bare interaction between the colliding nuclei, supplemented with a phenomenological imaginary part of Woods-Saxon type. In addition, three- and four-body continuum-discretized coupled-channels calculations have been performed to investigate the effect of the projectile breakup on the elastic scattering. Both effects, the coupling to target and projectile excited states, are found to affect significantly the elastic scattering. The trivial local polarization potential extracted from the continuum-discretized coupled-channels calculations indicates that continuum couplings produce a repulsive real part and a long-range imaginary part in the projectile-target interaction.
Resumo:
Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.
Resumo:
Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation.
Resumo:
The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained from ground-state density functionals. As a viability test, the method is applied to ground-state energies and various types of excited-state energies of atoms and ions from the He and the Li isoelectronic series. Results are compared to a variety of alternative DFT-based approaches to excited states, in particular time-dependent density-functional theory with exact and approximate potentials.
Resumo:
Phosphoric acid is generally obtained from an aqueous process starting with the reaction between phosphate rock and sulphuric acid. Due to their chemical similarity, uranium is usually associated with phosphate rock which during chemical processing is partitioned to phosphoric acid. Uranium determination in this matrix is a very important task because of its ingestion it could lead to radiological impact on the population. Therefore, a procedure was developed using an initial precipitation with calcium hydroxide and evaporation, followed by instrumental neutron activation analysis (INAA). The procedure was applied to analyse fourteen uranium enriched phosphoric acid samples.
Resumo:
The metrological principles of neutron activation analysis are discussed. It has been demonstrated that this method can provide elemental amount of substance with values fully traceable to the SI. The method has been used by several laboratories worldwide in a number of CCQM key comparisons - interlaboratory comparison tests at the highest metrological level - supplying results equivalent to values from other methods for elemental or isotopic analysis in complex samples without the need to perform chemical destruction and dissolution of these samples. The CCOM accepted therefore in April 2007 the claim that neutron activation analysis should have the similar status as the methods originally listed by the CCOM as `primary methods of measurement`. Analytical characteristics and scope of application are given.
Resumo:
In 2003-2004, several food items were purchased from large commercial outlets in Coimbra, Portugal. Such items included meats (chicken, pork, beef), eggs, rice, beans and vegetables (tomato, carrot, potato, cabbage, broccoli, lettuce). Elemental analysis was carried out through INAA at the Technological and Nuclear Institute (ITN, Portugal), the Nuclear Energy Centre for Agriculture (CENA, Brazil), and the Nuclear Engineering Teaching Lab of the University of Texas at Austin (NETL, USA). At the latter two, INAA was also associated to Compton suppression. It can be concluded that by applying Compton suppression (1) the detection limits for arsenic, copper and potassium improved; (2) the counting-statistics error for molybdenum diminished; and (3) the long-lived zinc had its 1115-keV photopeak better defined. In general, the improvement sought by introducing Compton suppression in foodstuff analysis was not significant. Lettuce, cabbage and chicken (liver, stomach, heart) are the richest diets in terms of human nutrients.
Resumo:
Aiming at the determination of toxic and essential elements in Brazilian commercial bovine milk, 25 ultra high temperature (UHT) milk samples were acquired in the local market of Piracicaba, SP. The samples were freeze-dried and analyzed by instrumental neutron activation analysis (INAA) allowing the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn. When the results were expressed as concentration (mg.l(-1)) no significant differences were found. However, considering the dry matter, results showed a clear difference between the mass fractions (mg.kg(-1) d.w.) of skim milk and whole milk for the elements Br, Ca, K, Na, Rb and Zn, indicating that the removal of fat caused a concentration effect in the dry matter of skim milks. Discrepancies were found between the concentrations of Ca and Na measured by INAA and the values informed in the labels. Ca showed variations within 30% for most samples, while concentrations of Na were up to 190% higher than informed values. The sample preparation and the LNAA procedure were appropriate for the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn in milk samples.
Resumo:
Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking alpha(2A) and alpha(2C) adrenoceptor knockout (alpha(2A)/alpha(2C) ARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, alpha(2A)/alpha(2C)ARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT(1) receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.
Resumo:
Activation of the cephalosporin side-chain precursor to the corresponding CoA-thioester is an essential step for its incorporation into the P-lactam backbone. To identify an acyl-CoA ligase involved in activation of adipate, we searched in the genome database of Penicillium chrysogenum for putative structural genes encoding acyl-CoA ligases. Chemostat-based transcriptome analysis was used to identify the one presenting the highest expression level when cells were grown in the presence of adipate. Deletion of the gene renamed aclA, led to a 32% decreased specific rate of adipate consumption and a threefold reduction of adipoyl-6-aminopenicillanic acid levels, but did not affect penicillin V production. After overexpression in Escherichia coli, the purified protein was shown to have a broad substrate range including adipate. Finally, protein-fusion with cyan-fluorescent protein showed co-localization with microbody-borne acyl-transferase. Identification and functional characterization of aclA may aid in developing future metabolic engineering strategies for improving the production of different cephalosporins. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Tree defence mechanisms against the fungus Puccinia psidii were examined by comparing the activities of defence-related enzymes (chitinase, peroxidase and phenylalanine ammonia-lyase) of two Eucalyptus grandis x E. urophylla (urograndis) hybrids, previously classified as either susceptible to rust (VR hybrid) or moderately resistant to rust (C0 hybrid). Furthermore, the potential of disease control by artificial activation of host defences using either acibenzolar-S-methyl (ASM) or Saccharomyces cerevisiae extract was also investigated. Greenhouse inoculation trials revealed that the C0 hybrid had lower disease severity than the VR hybrid but following foliar applications of either ASM or S. cerevisiae extract treatment, disease severity (evaluated at 15 days after inoculation) was reduced in both hybrids. This enhanced resistance was associated with the induction of a hypersensitive reaction which appeared to be effective in controlling rust in both clones. The activity of all enzymes differed between clones and inducer treatment. The role of the defence-related enzymes in imparting resistance to eucalypt hybrids against rust is discussed.
Resumo:
Dendritic cells (DCs) have been described as initiators and modulators of the immune response. Recently we have shown a predominant production of interleukin-10 cytokine, low levels of interferon-gamma and inefficient T cell proliferation in patients with severe forms of chromoblastomycosis. Chromoblastomycosis starts with subcutaneous inoculation of Fonsecaea pedrosoi into tissue where DCs are the first line of defence against this microorganism. In the present study, the interaction of F. pedrosoi and DCs obtained from patients with chromoblastomycosis was investigated. Our results showed that DCs from patients exhibited an increased expression of human leucocyte antigen D-related (HLA-DR) and co-stimulatory molecules. In the presence of conidia, the expression of HLA-DR and CD86 was up-regulated by DCs from patients and controls. Finally, we demonstrate the reversal of antigen-specific anergy and a T helper type 1 response mediated by DCs incubated with F. pedrosoi conidea.
Resumo:
Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.