965 resultados para 93
Resumo:
Small amounts of C1-C8 hydrocarbons were detected in continental rise sediments from DSDP Site 603. Organiccarbon- lean sections contained only C1-C3 compounds believed to have migrated from organic-carbon-rich sections. Heavier (C4-C8) hydrocarbons were found only in organic-carbon-rich sections. Restricted and sporadic distribution of C4-C6 compounds in 0-1100 m sub-bottom sediments suggest low-temperature (<20°C) biological/chemical generation processes. Increased C4-C8 concentrations and complexity, including unusually high levels of xylene, were detected in two deeper Cretaceous sections (603-34-2, 134 cm and 603-81-3, 120 cm). This behavior, which was not observed in 17 other samples from sub-bottom depths greater than 1100 m, is similar to that observed in immature surface sediments from the geothermally active Guaymas Basin (Gulf of California) area.
Resumo:
Diagenesis of the fine-grained, feldspathic sandstones in the Lower Cretaceous submarine fan complex cored in DSDP Hole 603B can be considered to have occurred in three stages: (1) replacement of matrix and framework grains by pyrite, siderite, phillipsite (?), and particularly by ferroan calcite; (2) dissolution of ferroan calcite and feldspars to produce secondary macroporosity; and (3) development of sparse feldspar and quartz overgrowths, and authigenic modification of remnant matrix. Only ferroan calcite is a volumetrically important diagenetic mineral phase (up to 50 vol.%). Matrix in thin sandstone turbidite deposits has been extensively replaced by ferroan calcite. Carbon stable isotope data suggest that organic diagenesis had only a minor influence on calcite precipitation. Oxygen stable isotope data indicate that the minimum average calcite precipitation temperature was 40° C. Preliminary calculations show that steadystate diffusion of Ca+ + from the dissolution of nannoplankton skeletal material in the interbedded pelagic marls to the associated sandstones is a feasible transport mechanism. A thick sandstone unit from 1234-1263 m sub-bottom is extensively replaced by calcite near the upper and lower contacts. Farther into the sand body away from the contacts, the sandstone has good secondary porosity resulting from the dissolution of ferroan calcite that partially replaced matrix and framework grains. The central portion of the thick sand appears to be a channel with high-energy clean sand. We believe that the channel provided a conduit for focused flow of diagenetic compactional fluids responsible for dissolution. Focused flow may be the result of the earlier lithification of the pelagic limestones and thin-bedded sandstones which, then formed vertical permeability barriers. Calcite dissolution has occurred and may still be occurring at temperatures less than 65°C.