926 resultados para 690200 Water Transport


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanographic conditions and transport processes are often critical factors that affect the early growth, survival and recruitment of marine fishes. Sagittal otoliths were analysed to determine age and early growth for 381 jack mackerel (Trachurus japonicus) juveniles from Sagami Bay on the Pacific coast of Japan. Two separate hatching periods ( December and February-March) were identified. They originated from the spawning grounds in the East China Sea. Early growth and developmental rates of December-hatching fish were lower than those for February-March-hatching fish. It is likely that these differences were determined in the Kuroshio Current during transport from the spawning grounds to Sagami Bay, and the lower December water temperatures in the bay. Origin and hatch dates of juveniles in Sagami Bay were in contrast to previous research on Fukawa Bay, where April-or-later-hatching fish from spawning grounds in the coastal waters of southern Japan constituted about half of the juvenile population. Management of these two jack mackerel stocks needs to consider these differences in hatch date composition and spawning origins, as these differences could affect early growth and subsequent mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusion of water in a phase-separated biodegradable poly(ester urethane) shape-memory polymer with poly(E-caprolactone) (PCL) as the soft segment was investigated using time-resolved FTIR-ATR. On the basis of the band fitting and water ordering in drawn films, the broad water band in the 3800-2800 cm(-1) region was decomposed into four bands located at 3620, 3510, 3400, and 3260 cm(-1), and the first two components at 3620 and 35 10 cm(-1) were assigned to the vibrations of antisymmetric and symmetric stretching of water hydrogen bonded with the C=O group of the soft segment. The other two were associated with water bonded to the urethane hard segments in the forms of N-H:O-H:O=C bridge hydrogen bond and double hydrogen bonds with two C=O groups, respectively. Furthermore, band fitting and two-dimensional correlation analyses revealed that in the diffusion process, water first diffuses into the continuous soft-rich PCL phase and then into the hard-rich urethane domains, forming double hydrogen bonds with two C=O groups prior to the bridge hydrogen bond in the form of N-H:O-H:O=C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conductive hybrids were prepared in a water/ethanol solution via the Solgel process from an inorganic sol containing carboxyl groups and water-borne conductive polyaniline (cPANI). The inorganic sol was prepared by the hydrolysis and condensation of methyltriethoxysilane with the condensed product of maleic anhydride and aminopropyltriethoxysilane as a catalyst, for which the carboxyl counterion along the cPANI backbone acted as an electrostatic-interaction moiety. The existence of this electrostatic interaction could improve the compatibility of the two components and contribute to the homogeneous dispersion of cPANI in the silica phase. The electrostaticinteraction hybrids displayed a conductivity percolation threshold as low as 1.1 wt % polyaniline in an emeraldine base, showing 2 orders of magnitude higher electrical conductivity than that without electrostatic interactions. The electrostatic-interaction hybrids also showed good water resistance; the electrical conductivity with a cPANI loading of 16 wt % underwent a slight change after 14 days of soaking in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-standing conductive films of organic-inorganic hybrids were prepared employing the sol-gel process of (3-glycidoxypropyl)trimethoxysilane (GPTMS) and water-borne conductive polyaniline (cPANI) in water/ethanol solution. The hybrids displayed a percolation threshold for electrical conductivity at a volume fraction of 2.1% polyaniline (PANI); the maximum conductivity of the hybrids reached 0.6 S/cm. GPTMS showed good compatibility with water-borne cPANI during the sol-gel process, and freestanding conductive films were obtained at room temperature. Transmission electron microscopy images of the hybrids indicated that the cPANI was dispersed in the inorganic phase in nanoscale. Because of good confinement of cPANI chains in the inorganic network, water resistance of the hybrid films was significantly improved compared with that of pure cPANI; the electrical conductivity of the films kept stable for 6-7 days soaking in water, whereas it decreased sharply for 1 day soaking for the pure cPANI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conducting polyaniline-poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three-phase model combining morphological factors instead of a two-phase model was proposed to explain the low-conductivity percolation threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel polyetherethersulfone (PES-C) prepared from phenol-phthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, the PES-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. The sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PES-C in sodium form was made by IR. Some properties of the sulfonated PES-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor have also been discussed. (C) 1997 John Wiley & Sons, Inc.