998 resultados para 570 Life sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a complex avascular organ of viscoelastic properties. The current research focus is to regenerate and to partially restore a degenerated IVD by ‘smart’ biomaterials in combination of cell therapy and/or growth factors. For the two tissues of the IVD, that is, the nucleus pulposus (NP) and the annulus fibrosus (AF), biomaterials of different mechanical properties are needed. The ideal biomaterial to restore the water-rich NP and the tensile-force resistant AF has not been identified yet. The lack of blood vessels and the relative scarcity of specially adapted cells of the IVD organ demand novel concepts of tissue-engineered biological approaches to regenerate or replace the IVD. Injectable biodegradable hydrogels with swelling properties are in focus for NP replacement, whereas electrospun biphasic composites and silk, among other biodegradable polymers, are discussed for AF reinforcement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was initiated to assess the quantitative impact of patient anthropometrics and dihydropyrimidine dehydrogenase (DPYD) mutations on the pharmacokinetics (PK) of 5-fluorouracil (5FU) and to explore limited sampling strategies of 5FU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of a-tocopherol transfer" "protein (a-TTP) towards a-tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for a-tocopherol to a-TTP 8.26+2.13 kcal mol{1 lower than that of c-tocopherol. Our calculations show that c-tocopherol binds to a-TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of a-TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to c-tocopherol, with striking structural similarities to the wild-type- a-tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of a-TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover," "the identification of a c-tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for a-tocopherol selection in omnivorous animals."

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptide dendrimer H1 Leu8(Lys-Leu)4(Lys-Phe)2Lys-LysNH2 (Lys = branching lysine) was identified by screening a 6750-membered combinatorial library by the bead-diffusion assay. Sequence variations also revealed dendrimer bH1 Leu8(Dap-Leu)4(Dap-Phe)2Dap-LysNH2 (Dap = branching 2,3-diaminopropanoic acid) as a more potent analog. H1 and bH1 showed good antimicrobial activities mediated by membrane disruption (MIC = 2–4 μg mL−1 on Bacillus subtilis and Escherichia coli) but low hemolytic activity (MHC = 310 μg mL−1 respectively >2000 μg mL−1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm.