959 resultados para 5-6 cm long (excluding Sagitta maxima), from data of net hauls
Resumo:
Background:Diagnosis of childhood active tuberculosis (aTB) or latent Mycobacterium tuberculosis (Mtb) infection (LTBI) remains a challenge, and replacement of tuberculin skin tests (TST) by commercialized interferon-gamma release assays (IGRA) is not currently recommended.Methods:266 children between 1 month and 15 years of age, 214 being at risk of recent Mtb infection and 51 being included as controls, were prospectively enrolled. According results of clinical evaluation, TST, chest X-Ray and microbiology, children were classified as non-infected, LTBI or aTB. Long-incubation time PPD-, ESAT-6-, and CFP-10-IGRA were performed and evaluated for their accuracy to correctly classify the children.Results:Whereas both TST and PPD-IGRA were suboptimal to detect aTB, combining CFP-10-IGRA with TST or with PPD-IGRA allowed us to detect all the children with aTB, with 96% specificity for children who were positive for CFP-10-IGRA. Moreover, combination of CFP-10- and PPD-IGRA also detected 96% of children classified as LTBI, but a strong IFN-γ response to CFP-10 (>500 pg/ml) was highly suggestive of aTB at least among children less than 3 years old.Conclusions:Long-incubation time CFP-10- and PPD-IGRA should help the clinicians to identify quickly aTB or LTBI in young children.
Resumo:
To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.
Resumo:
Ins(1,4,5,6)P4, a biologically active cell constituent, was recently advocated as a substrate of human Ins(3,4,5,6)P4 1-kinase (hITPK1), because stereochemical factors were believed relatively unimportant to specificity [Miller, G.J. Wilson, M.P. Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201-212]. Contrarily, we provide three examples of hITPK1 stereospecificity. hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3 and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has >13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer, Ins(1,4,5,6)P4. The biological significance of hITPK1 being stereospecific, and not physiologically phosphorylating Ins(1,4,5,6)P4, is reinforced by our demonstrating that Ins(1,4,5,6)P4 is phosphorylated (K(m) = 0.18 microM) by inositolphosphate-multikinase.
Resumo:
Data from the continuous plankton recorder (CPR) survey collected in the late-1940s to early-1960s indicated that the abundance of decapod larvae was low and the seasonal peak of abundance was late following cold winters. The phenological effect of temperature was shown to be consistent with relationships between both geographical and interannual patterns of variation. Analyses of CPR data collected from the 1940s to the present day reveal large-scale long-term changes in the abundance and phenology of the North Sea meroplankton. Echinoderm larvae, whose peak abundance has advanced by 47 days, show the greatest shift in timing. Echinoderm larvae have also increased in abundance to become the most abundant taxon in North Sea CPR samples. Genetic and morphological analyses of CPR samples show that the variations in echinoderm larvae are mainly attributable to an increasing abundance and earlier occurrence of the larvae of a resident species, Echinocardium cordatum, rather than a change in species composition. The remarkable scale of the changes in abundance and phenology of the meroplankton, which are greater than those seen in the holoplankton, has stimulated the development of further research into the causes and effects of these changes.
Resumo:
Since strong regional warming has led to the disintegration of huge parts of the Larsen A and B ice shelves east of the Antarctic Peninsula in 1995 and 2002, meiofaunal communities covered by ice shelves for thousands of years could be investigated for the first time. Based on a dataset of more than 230,000 individuals, meiobenthic higher taxa diversity and composition of Larsen continental shelf stations were compared to those of deep-sea stations in the Western Weddell Sea to see whether the food-limiting conditions in the deep sea and the food-poor shelf regime at times of iceshelf coverage has resulted in similar meiobenthic communities, on the premises that food availability is the main driver of meiobenthic assemblages. We show here that this is indeed the case; in terms of meiobenthic communities, there is greater similarity between the deep sea and the inner Larsen embayments than there is similarity between the deep sea and the former Larsen B iceshelf edge and the open continental shelf. We also show that resemblance to Antarctic deep-sea meiofaunal communities was indeed significantly higher for communities of the innermost Larsen B area than for those from intermediate parts of Larsen A and B. Similarity between communities from intermediate parts and the deep sea was again higher than between those of the ice-edge and the open shelf. Meiofaunal densities were low at the inner parts of Larsen A and B, and comparable to deep-sea densities, again likely owing to the low food supply at both habitats. We suggest that meiobenthic communities have not yet recovered from the food-limiting conditions present at the time of iceshelf coverage. Meiofaunal diversity on the other hand seemed driven by sediment structure, being higher in coarser sediments.
Resumo:
A novel [Ni'S-4'Fe-2(CO)(6)] cluster (1: 'S-4'=(CH3C6H3S2)(2)(CH2)(3)) has been synthesised, structurally characterised and has been shown to undergo a chemically reversible reduction process at -1.31 V versus Fc(+)/Fc to generate the EPR-active monoanion 1(-). Multifrequency Q-, X- and S-band EPR spectra of Ni-61-enriched 1(-) show a well-resolved quartet hyperfine splitting in the low-field region due to the interaction with a single Ni-61 (I = 3/2) nucleus. Simulations of the EPR spectra require the introduction of a single angle of non-coincidence between g, and A(1), and g(3) and A(3) to reproduce all of the features in the S- and X-band spectra. This behaviour provides a rare example of the detection and measurement of non-coincidence effects from frozen-solution EPR spectra without the need for single-crystal measurements, and in which the S-band experiment is sensitive to the non-coincidence. An analysis of the EPR spectra of 1(-) reveals a 24% Ni contribution to the SOMO in 1(-), supporting a delocalisation of the spin-density across the NiFe2 cluster. This observation is supported by IR spectroscopic results which show that the CO stretching frequencies, v(CO), shift to lower frequency by about 70 cm(-1) when 1 is reduced to 1(-). Density functional calculations provide a framework for the interpretation of the spectroscopic properties of 1(-) and suggest that the SOMO is delocalised over the whole cluster, but with little S-centre participation. This electronic structure contrasts with that of the Ni-A, -B, -C and -L forms of [NiFe] hydrogenase in which there is considerable S participation in the SOMO.
Resumo:
At the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site, the iron content of shallow subsurface materials (i.e. weathered saprolite) is relatively high (up to 5-6% as w/w), and therefore, the forms of the iron species present plays a critical role in the long-term sequestration of uranium. A long term pilot-scale study of the bioreduction and reoxidation of uranium conducted at the ORIFRC area 3 site, adjacent to the former S-3 disposal ponds (source zone), has provided us with the opportunity to study the impact of iron species on the sequestration of U(VI). The aqueous U(VI) concentrations at the site were decreased to below the EPA MCL through the intermittent injection of ethanol as the electron donor. Previous field tests indicated that both oxygen and nitrate could oxidize the bioreduced U(IV) and cause a short-term rebound of aqueous phase uranium concentration after the oxidative agents were delivered directly to the bioreduced zone.
A field test has been conducted to examine the long-term effect of exposure of bioreduced sediments to nitrate in contaminated groundwater for more than 1,380 days at the Area 3 site. Contaminated groundwater was allowed to invade the previously bioreduced zone via the natural groundwater gradient after an extended period in which reducing conditions were maintained and the bioreduced zone was protected from the influx of upgradient contaminated groundwater. The geochemical response to the invasion of contaminated groundwater was dependent on whether the monitoring location is in the middle or the fringe of the previously bioreduced zone. In general, the nitrate concentrations in the previously bioreduced area, increased gradually from near zero to ~50-300 mM within 200 days and then stabilized. The pH declined from bioreduced levels of 6.2-6.7 to below 5.0. Uranium concentrations rebounded in all monitoring wells but at different rates. At most locations U concentrations rebounded, declined and then rebounded again. Methane gas disappeared while a significant level (20,000 to 44,000 ppmv) N2O was found in the groundwater of monitoring wells after three years of reoxidization.
The U(IV) in sediments was mainly reoxidized to U(VI) species. Based on XANES analysis, the predominate uranium in all samples after re-oxidation was similar to a uranyl nitrate form. But the U content in the sediment remained as high as that determined after bioreduction activates were completed, indicating that much of the U is still sequestrated in situ. SEM observations of surged fine sediments revealed that clusters of colloidal-sized (200-500nm) U-containing precipitates appeared to have formed in situ, regardless from sample of FW106 in non-bioactivity control area or of pre-bioreduced FW101-2 and FW102-3. Additionally, SEM-EDS and microprobe analysis, showed that the U-containing precipitates (~1% U) in FW106 are notably higher in Fe, compared to the precipitates (~1-2.5% U) from FW101-2 and FW102-3. However, XRF analysis indicated that the U content was remained as high as 2180 and 1810 mg/kg with U/Fe ratio at 0.077 and 0.055 vs 0.037 g/g, respectively in pre-bioreduced FW101-2 and FW102-3, suggesting more U sequestrated by Fe in pre-bioreduced sediments.
Resumo:
Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitrooxidativeinsult to the developing retinal vasculature during therapeutic hyperoxia exposure and laterischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerativephase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygenand nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. More important,NOS critically depends on the availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4).Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCHdepletedmice [hyperphenylalanaemia strain Q4 (hph1)] to investigate the impact of hyperoxia on BH4bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas,lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activityand, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarlydiminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletionof BH4, the hphþ/ and hph1/ groups did not show exacerbated hyperoxia-induced vessel closure,but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotectiveeffect was independent of enhanced circulating vascular endothelial growth factor (VEGF),which was reduced by hyperoxia, but Q5 to local ganglion cell layerederived VEGF. A constitutively higherlevel of VEGF expression associated with retinal development protects GTPCH-deficient neonates fromoxygen-induced vascular damage.
Resumo:
We present grizP1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w = -1.120+0.360-0.206(Stat)+0.2690.291(Sys). When combined with BAO+CMB(Planck)+H0, the analysis yields ΩM = 0.280+0.0130.012 and w = -1.166+0.072-0.069 including all identified systematics. The value of w is inconsistent with the cosmological constant value of -1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H0 constraint, though it is strongest when including the H0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w = -1.124+0.083-0.065, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ∼three times as many SNe should provide more conclusive results.