930 resultados para 3D virtual models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A interação homem-máquina tem evoluído significativamente nos últimos anos, a ponto de permitir desenvolver soluções adequadas para apoio a pessoas que possuem um certo tipo de limitação física ou cognitiva. O desenvolvimento de técnicas naturais e intuitivas de interação, as chamadas Natural User Interface (NUI), permitem, hoje, que pessoas que estejam acamadas e/ou com incapacidade motora possam executar um conjunto de ações por intermédio de gestos, aumentando assim a sua qualidade de vida. A solução implementada neste projecto é baseada em processamento de imagem e visão por computador através do sensor 3D Kinect e consiste numa interface natural para o desenvolvimento de uma aplicação que reconheça gestos efetuados por uma mão humana. Os gestos identificados pela aplicação acionam um conjunto de ações adequados a uma pessoa acamada, como, por exemplo, acionar a emergência, ligar ou desligar a TV ou controlar a inclinação da cama. O processo de desenvolvimento deste projeto implicou várias etapas. Inicialmente houve um trabalho intenso de investigação sobre as técnicas e tecnologias consideradas importantes para a realização do trabalho - a etapa de investigação, a qual acompanhou praticamente todo o processo. A segunda etapa consistiu na configuração do sistema ao nível do hardware e do software. Após a configuração do sistema, obtiveram-se os primeiros dados do sensor 3D Kinect, os quais foram convertidos num formato mais apropriado ao seu posterior tratamento. A segmentação da mão permitiu posteriormente o reconhecimento de gestos através da técnica de matching para os seis gestos implementados. Os resultados obtidos são satisfatórios, tendo-se contabilizado cerca de 96% de resultados válidos. A área da saúde e bem-estar tem necessidade de aplicações que melhorem a qualidade de vida de pessoas acamadas, nesse sentido, o protótipo desenvolvido faz todo o sentido na sociedade actual, onde se verifica o envelhecimento da população.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a part of a multidisciplinary and integrated research, including conservation sciences and history, a proposal is presented for the historical reconstitution and the virtual restoration of the mannerist altarpiece of the main altar at the Espírito Santo Church, in Évora. The collected data is abundant and the scientific information, because of its technicality, is less prone to be easily understood by the general public, thus becoming less accessible. Web-based infographics are explored as privileged forms of disseminating results and raising awareness to Cultural Heritage. The project materializes as an Internet platform where data and a reconstitution proposal are shared in a visual and interactive way. In addition to the digital virtual reconstitution (2D), some tridimensional models (3D) are presented of various elements of the altarpiece, obtained using methods of computer graphics and digital photogrammetry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, it has become evident that the role of mitochondria in the metabolic rewiring is essential for cancer development and progression. The metabolic profile during tumorigenesis has been performed mainly in traditional 2D cell models, including cell lines of various lineages and phenotypes. Although useful in many ways, their relevance can be often debatable, as they lack the interactions between different cells of the tumour microenvironment and/or interaction with the extracellular matrix 1,2. Improved models are now being developed using 3D cell culture technology, contributing with increased physiological relevance 3,4. In this work, we improved a method for the generation of 3D models from healthy and tumour colon tissue, based on organoid technology, and performed their molecular and biochemical characterization and validation. Further, in-plate cryopreservation was applied to these models, and optimal results were obtained in terms of cell viability and functionality of the cryopreserved models. We also cryopreserved colon fibroblasts with the aim to introduce them in a co-culture cryopreserved model with organoids. This technology allows the conversion of cell models into “plug and play” formats. Therefore, cryopreservation in-plate facilitates the accessibility of specialized cell models to cell-based research and application, in cases where otherwise such specialized models would be out of reach. Finally, we briefly explored the field of bioprinting, by testing a new matrix to support the growth of colon tumour organoids, which revealed promising preliminary results. To facilitate the reader, we organized this thesis into chapters, divided by the main points of work which include development, characterization and validation of the model, commercial output, and associated applications. Each chapter has a brief introduction, followed by results and discussion and a final conclusion. The thesis has also a general discussion and conclusion section in the end, which covers the main results obtained during this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bone disorders have severe impact on body functions and quality life, and no satisfying therapies exist yet. The current models for bone disease study are scarcely predictive and the options existing for therapy fail for complex systems. To mimic and/or restore bone, 3D printing/bioprinting allows the creation of 3D structures with different materials compositions, properties, and designs. In this study, 3D printing/bioprinting has been explored for (i) 3D in vitro tumor models and (ii) regenerative medicine. Tumor models have been developed by investigating different bioinks (i.e., alginate, modified gelatin) enriched by hydroxyapatite nanoparticles to increase printing fidelity and increase biomimicry level, thus mimicking the organic and inorganic phase of bone. High Saos-2 cell viability was obtained, and the promotion of spheroids clusters as occurring in vivo was observed. To develop new syntethic bone grafts, two approaches have been explored. In the first, novel magnesium-phosphate scaffolds have been investigated by extrusion-based 3D printing for spinal fusion. 3D printing process and parameters have been optimized to obtain custom-shaped structures, with competent mechanical properties. The 3D printed structures have been combined to alginate porous structures created by a novel ice-templating technique, to be loaded by antibiotic drug to address infection prevention. Promising results in terms of planktonic growth inhibition was obtained. In the second strategy, marine waste precursors have been considered for the conversion in biogenic HA by using a mild-wet conversion method with different parameters. The HA/carbonate ratio conversion efficacy was analysed for each precursor (by FTIR and SEM), and the best conditions were combined to alginate to develop a composite structure. The composite paste was successfully employed in custom-modified 3D printer for the obtainment of 3D printed stable scaffolds. In conclusion, the osteomimetic materials developed in this study for bone models and synthetic grafts are promising in bone field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to develop and validate equations to estimate the aboveground phytomass of a 30 years old plot of Atlantic Forest. In two plots of 100 m², a total of 82 trees were cut down at ground level. For each tree, height and diameter were measured. Leaves and woody material were separated in order to determine their fresh weights in field conditions. Samples of each fraction were oven dried at 80 °C to constant weight to determine their dry weight. Tree data were divided into two random samples. One sample was used for the development of the regression equations, and the other for validation. The models were developed using single linear regression analysis, where the dependent variable was the dry mass, and the independent variables were height (h), diameter (d) and d²h. The validation was carried out using Pearson correlation coefficient, paired t-Student test and standard error of estimation. The best equations to estimate aboveground phytomass were: lnDW = -3.068+2.522lnd (r² = 0.91; s y/x = 0.67) and lnDW = -3.676+0.951ln d²h (r² = 0.94; s y/x = 0.56).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.