997 resultados para 3D QSAR
Resumo:
This work describes the parallelization of High Resolution flow solver on unstructured meshes, HIFUN-3D, an unstructured data based finite volume solver for 3-D Euler equations. For mesh partitioning, we use METIS, a software based on multilevel graph partitioning. The unstructured graph used for partitioning is associated with weights both on its vertices and edges. The data residing on every processor is split into four layers. Such a novel procedure of handling data helps in maintaining the effectiveness of the serial code. The communication of data across the processors is achieved by explicit message passing using the standard blocking mode feature of Message Passing Interface (MPI). The parallel code is tested on PACE++128 available in CFD Center
Resumo:
Coulomb interaction strengths (Udd and Uff) have been calculated from Hartree-Fock-Slater atomic calculations for 3d transition and 5f actinide elements, respectively. By decomposing the different contributions to the response (screening) to the 3d charge fluctuation, we show that a substantial reduction in Udd arises due to the relaxation of the 3d charge distribution itself. This, combined with the screening due to the response of the 4s charge density, is shown to provide a very compact screening charge comparable to the metallic case, explaining the success of the atomic calculations for estimating U even in the metals. A pronounced dependence of Udd (or Uff) on the number of electrons nd (nf) or the electronic configuration is also shown here.
Resumo:
Sinusoidal structured light projection (SSLP) technique, specifically-phase stepping method, is in widespread use to obtain accurate, dense 3-D data. But, if the object under investigation possesses surface discontinuities, phase unwrapping (an intermediate step in SSLP) stage mandatorily require several additional images, of the object with projected fringes (of different spatial frequencies), as input to generate a reliable 3D shape. On the other hand, Color-coded structured light projection (CSLP) technique is known to require a single image as in put, but generates sparse 3D data. Thus we propose the use of CSLP in conjunction with SSLP to obtain dense 3D data with minimum number of images as input. This approach is shown to be significantly faster and reliable than temporal phase unwrapping procedure that uses a complete exponential sequence. For example, if a measurement with the accuracy obtained by interrogating the object with 32 fringes in the projected pattern is carried out with both the methods, new strategy proposed requires only 5 frames as compared to 24 frames required by the later method.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.
Resumo:
Reaction of formamide with Ni(NO3)(2)center dot 6H(2)O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)(2)(MeOH)(2) (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4'-bipyridyl (4,4'-bipy) yielded a three-dimensional structure Ni(HCOO)(2)(4,4'-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with T-c (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an algorithm for generating the Interior Medial Axis Transform (iMAT) of 3D objects with free-form boundaries. The algorithm proposed uses the exact representation of the part and generates an approximate rational spline description of the iMAT. The algorithm generates the iMAT by a tracing technique that marches along the object's boundary. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction points and the search for these junction points is done in an efficient way. The algorithm works for multiply-connected objects as well. Results of the implementation are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.
Resumo:
We report 3d-4d4d Auger spectra of Ce metal with the use of synchrotron radiation to excite the initial core hole. By sweeping the excitation energy through the 3d-->4f threshold, it has been possible to excite different initial states selectively, enabling us to analyze the complex spectrum in terms of different contributions arising from various deca channels.
Resumo:
During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These phenomena have been observed for decades, but still evade a clear theoretical explanation. Here we present preliminary results from 3D MHD simulations of such subsurface convection.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
In linear elastic fracture mechanics (LEFM), Irwin's crack closure integral (CCI) is one of the signficant concepts for the estimation of strain energy release rates (SERR) G, in individual as well as mixed-mode configurations. For effective utilization of this concept in conjunction with the finite element method (FEM), Rybicki and Kanninen [Engng Fracture Mech. 9, 931 938 (1977)] have proposed simple and direct estimations of the CCI in terms of nodal forces and displacements in the elements forming the crack tip from a single finite element analysis instead of the conventional two configuration analyses. These modified CCI (MCCI) expressions are basically element dependent. A systematic derivation of these expressions using element stress and displacement distributions is required. In the present work, a general procedure is given for the derivation of MCCI expressions in 3D problems with cracks. Further, a concept of sub-area integration is proposed which facilitates evaluation of SERR at a large number of points along the crack front without refining the finite element mesh. Numerical data are presented for two standard problems, a thick centre-cracked tension specimen and a semi-elliptical surface crack in a thick slab. Estimates for the stress intensity factor based on MCCI expressions corresponding to eight-noded brick elements are obtained and compared with available results in the literature.
Resumo:
A method to reliably extract object profiles even with height discontinuities (that leads to 2n pi phase jumps) is proposed. This method uses Fourier transform profilometry to extract wrapped phase, and an additional image formed by illuminating the object of interest by a novel gray coded pattern for phase unwrapping. Simulation results suggest that the proposed approach not only retains the advantages of the original method, but also contributes significantly in the enhancement of its performance. Fundamental advantage of this method stems from the fact that both extraction of wrapped phase and unwrapping the same were done by gray scale images. Hence, unlike the methods that use colors, proposed method doesn't demand a color CCD camera and is ideal for profiling objects with multiple colors.
Resumo:
This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.