973 resultados para 270308 Microbial Systematics, Taxonomy and Phylogeny


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new species and two new genera of thelastomatoid are described from several species of Australian burrowing cockroaches (Blattodea: Panesthiinae; Geoscapheinae). Corpicracens munozae n. g., n. sp., Pseudodesmicola botti n. g., n. sp. and Cephalobellus nolani n. sp. are described from Geoscapheus dilatatus (Blattodea: Geoscapheinae) from Mendooran, New South Wales; one new thelastomatid, Blattophila praelongicauda n. sp., is described from Panesthia cribrata from Lamington National Park, Queensland. Corpicracens munozae n. g., n. sp. is long and slender, with a monodelphic female reproductive system, a clavate corpus with a slight posterior pseudobulb, oval eggs flattened at the poles, and a relatively robust, subulate tail. Pseudodesmicola botti n. g., n. sp. is slightly more robust in body, also has a monodelphic reproductive system, a cylindrical corpus with a posterior pseudobulb, ovoid eggs and a very long, subulate tail. Cephalobellus nolani n. sp. is distinguished from other members of the genus by its relatively short and broad body and egg shape. Lastly, Blattophila praelongicauda n. sp. is distinguished from other members of the genus by having eggs with a single, polar operculum, tail length, and position of the vulva, nerve ring and excretory pore. An additional species, known by a single specimen from Panesthia tryoni tryoni from the same locality is characterised but not named. The species found are all relatively rare parasites of Australian burrowing cockroaches, each having a prevalence of less than 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new species, Stephanostomum talakitok n. sp., is described from the golden trevally Gnathanodon speciosus, Ningaloo Reef, Western Australia. It has 36 (34-40) circum-oral spines and the vitellarium reaches to no less than 10-17% of the hindbody length from the ventral sucker. It differs from other species of Stephanostomum with these characteristics by combinations of the gradual diminution of the circum-oral spine size to a small mid-ventral spine, the contiguous gonads with no intervening vitelline follicles, the sucker-ratio and various other ratios, including the distance between the ventral sucker and the ovary and the distance the cirrus-sac reaches into the hindbody, both as a proportion of body length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thelastomatoid fauna of Macropanesthia rhinoceros was examined from 13 localities across its range in Queensland, Australia. Nine species of thelastomatoids, including two representing new genera, Geoscaphenema megaovum n. g., n. sp. and Jaidenema rhinoceratum n. g., n. sp., were found. Macropanesthia rhinoceros is reported as a new host for seven species previously recorded from Panesthia cribrata (Blaberidae: Panesthiinae) and P. tryoni tryoni, viz, Blattophila sphaerolaima, Leidynemella fusiformis, Cordonicola gibsoni, Travassosinema jaidenae, Coronostoma australiae, Hammerschmidtiella hochi and Desmicola ornata. Overall estimated richness for the system ranged from 10.1-13.5 species. The high degree of parasite faunal overlap between M. rhinoceros and the two Panesthia species is surprising given the disparate ecological niches that they occupy; P. cribrata and P. tryoni tryoni burrow in, and feed upon, moist decaying wood and require a climate that is moist all year round, whereas M. rhinoceros burrows in loose soil, feeds on fallen leaf litter and is tolerant of much drier environments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematics is the study of diversity of the organisms and their relationships comprising classification, nomenclature and identification. The term classification or taxonomy means the arrangement of the organisms in groups (rate) and the nomenclature is the attribution of correct international scientific names to organisms and identification is the inclusion of unknown strains in groups derived from classification. Therefore, classification for a stable nomenclature and a perfect identification are required previously. The beginning of the new bacterial systematics era can be remembered by the introduction and application of new taxonomic concepts and techniques, from the 50’s and 60’s. Important progress were achieved using numerical taxonomy and molecular taxonomy. Molecular taxonomy, brought into effect after the emergence of the Molecular Biology resources, provided knowledge that comprises systematics of bacteria, in which occurs great evolutionary interest, or where is observed the necessity of eliminating any environmental interference. When you study the composition and disposition of nucleotides in certain portions of the genetic material, you study searching their genome, much less susceptible to environmental alterations than proteins, codified based on it. In the molecular taxonomy, you can research both DNA and RNA, and the main techniques that have been used in the systematics comprise the build of restriction maps, DNA-DNA hybridization, DNA-RNA hybridization, sequencing of DNA sequencing of sub-units 16S and 23S of rRNA, RAPD, RFLP, PFGE etc. Techniques such as base sequencing, though they are extremely sensible and greatly precise, are relatively onerous and impracticable to the great majority of the bacterial taxonomy laboratories. Several specialized techniques have been applied to taxonomic studies of microorganisms. In the last years, these have included preliminary electrophoretic analysis of soluble proteins and isoenzymes, and subsequently determination of deoxyribonucleic acid base composition and assessment of base sequence homology by means of DNA-RNA hybrid experiments beside others. These various techniques, as expected, have generally indicated a lack of taxonomic information in microbial systematics. There are numberless techniques and methodologies that make bacteria identification and classification study possible, part of them described here, allowing establish different degrees of subspecific and interspecific similarity through phenetic-genetic polymorphism analysis. However, was pointed out the necessity of using more than one technique for better establish similarity degrees within microorganisms. Obtaining data resulting from application of a sole technique isolatedly may not provide significant information from Bacterial Systematics viewpoint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le but du présent travail est d’apporter la preuve paléontologique mettant en évidence que le clade Raninoida était bien établi dans le Néotropique durant la période Crétacée, où il était représenté par les plus anciennes familles ou par quelques–uns des plus anciens membres des plus anciennes familles. Je décris des taxa raninoïdiens ou similaires, incluant Archaeochimaeridae n. fam. et Archaeochimaera macrophthalma n. gen. n. sp., du Cénomanien supérieur (~95 Ma.) de Colombie (Chapitre 3), Planocarcinus n. gen., Planocarcinus olssoni (Rathbun, 1937) n. comb. et Notopocorystes kerri n. sp., de l’Aptien supérieur (~115 Ma.) de Colombie (Luque et al., accepté) (Chapitre 2). Ces taxa nouveaux, plus la présence de Cenomanocarcinus vanstraeleni Stenzel, 1945, dans l’Albien supérieur de Colombie (Vega et al., 2010), et d’Araripecarcinus ferreirai Martins–Neto, 1987, dans l’Albien du Brésil (Luque et al., en cours) (Chapitre 4), représentent certains des plus anciens signalements de quatre des sept familles raninoïdiennes, au moins, connues à ce jour. La nouvelle famile Archaeochimaeridae se présente comme le groupe frère du clade Raninidae + clade Symethidae. Cependant, la combinaison unique de caractères primitifs, dérivés et homoplasiques est inégalable chez les Raninoida, et, en fait, chez les autres sections de crabes podotrèmes. Alors que les taxa raninoïdiens du Crétacé sont bien connus aux latitudes élevées, les signalements en Amérique du Sud tropicale sont rares et épars, avec pour résultat de considérables distorsions pour traiter des importantes questions biogéographiques et phylogénétiques. Sur la base de données taxonomiques, paléobiogéographiques et cladistiques, une ré–appréciation des toute premières distributions spatio–temporelle des “crabes grenouilles” est proposée, avec pour objet de contribuer à une plus large compréhension de la diversité, phylogénie et évolution des premiers brachyoures au cours des âges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the order Mysidacea are important component in marine and estuarine plankton inhabiting all regions of the oceans. There are many brackish water species and few species occur in fresh water, some have become adapted to the specialized environments of caves and wells. They are omnivores, responsible for remineralisation of a substantial portion of the detritus in the water column. They form an important link in the food chain (between microbial producers and secondary consumers) and therefore play a major role in the cycling of energy within the aquatic ecosystem. In tropical and subtropical waters, swarms of mysids are exploited commercially and marketed as preserved cooked food. Mysids have been used in fish farming as live feed resource. They are also excellent experimental organism, extremely useful in the studies of potential impact of various pollutants in the aquatic environment. Mysids are also used in wood pulp effluent plants.Considering the significant role of mysids in the productivity of tropical and coastal ecosystems,the present study has been undertaken to extend our knowledge on the systematics, species composition, distribution,abundance and ecology of mysid fauna of the Indian EEZ and adjoining areas. The present study therefore will undoubtedly fumish valuable information on Mysidacea of the Indian waters.