903 resultados para 240402 Quantum Optics and Lasers
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
By using V-prism refractometer, the refractive indices of a polyetherketone (PEK-c) guest-host polymer system were measured with the polymer in solutions. The Lorenz-Lorentz local field formalism was used in the calculation of the refractive indices of the polymers from the measured indices of the polymer solutions and the pure solvent by using V-prism refractometer. The refractive index dispersions of the polymers were obtained by fitting the measured indices of the polymers to Sellmeyer equation. The method allows for an accuracy in index of 0.7% in the determination of the polymer indices. In addition, a large difference between the indices of the polymer and the solvent, and a higher polymer volume fraction in the measured polymer solution are favorable for a high accuracy. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Lanthanum magnesium hexaalumminate (LMA) is an important candidate for thermal barrier coatings due to its thermal stability and low thermal conductivity. On the other hand, laser glazing method can potentially make thermal barrier coatings impermeable, resistant to corrosion on the surface and porous at bulk. LMA powder was synthesized at 1600 degrees C by solid-state reaction, pressed into tablet and laser glazed with a 5-kW continuous wave CO2 laser.
Resumo:
In this study, two L27 Taguchi experiments were carried out to study the effect of fibre laser welding parameters and their interactions upon the weld bead aspect ratio of nickel–titanium thin foil. The optimum parameters to produce full penetrated weld with the largest aspect ratio and desirable microstructure were successfully obtained by the Taguchi experimental design. The corrosion property of the optimized NiTi weld in Hank’s solution at 37.5 °C was studied and compared with the as-received NiTi. To improve the corrosion properties of the weld, the effect of post-weld-heat-treatments ranging from 573 to 1173 K was investigated. The corrosion properties, surface morphology, microstructure and Ti/Ni ratio of the heat-treated NiTi weld were analysed. It was found that a post-weld heat treatment at 573 K for 1 h provided the best pitting corrosion resistance at the weld zone.
Resumo:
A simple, effective and inexpensive fiber optic sensor for investigating the setting characteristics of various grades of cement is described. A finite length of unsheathed multimode optical fiber laid inside the cement mix, is subjected to stress during the setting process. The microbends created on the fiber due to this stress directly influence the intensity of light propagating through the fiber. Continuous monitoring of such variations in the light output transmitted through the fiber gives a clear measure of the setting characteristics of the cement mix, thus providing a simple and elegant technique of great practical importance in the field of civil engineering. The smart fiber optic sensor described above can be incorporated into a building during the construction process itself so that continuous monitoring of the deterioration process for the entire life time of the building can be carried out.
Resumo:
In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.
Resumo:
This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.
Resumo:
In this paper we propose to employ an instability that occurs in bistable devices as a control signal at the reception stage to generate the clock signal. One of the adopted configurations is composed of two semiconductor optical amplifiers arranged in a cascaded structure. This configuration has an output equivalent to that obtained from Self-Electrooptic Effect Devices (SEEDs), and it can implement the main Boolean functions of two binary inputs. These outputs, obtained from the addition of two binary signals, show a short spike in the transition from "1" to "2" in the internal processing. A similar result is obtained for a simple semiconductor amplifier with bistable behavior. The paper will show how these structures may help recover clock signals in any optical transmission system
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
A novel all-fibre cavity ring down spectroscopy technique is proposed where a tilt fibre Bragg grating (TFBG) or long-period grating (LPG) in the cavity provides sensitivity to surrounding medium. Such configuration with an LPG as the representative was theoretically analyzed. Two spectral bands were identified employable for sensing of surrounding refractive index for a weak LPG while only one band existed for a strong LPG. A TFBG, with enhanced sensitivity compared to usual LPGs, was used in a ring down cavity of 1 m constructed with 2 fibre Bragg gratings as the reflectors and the decay time changed from 220 to 450 ns when the TFBG was immersed into water from air.
Resumo:
A self-reference fiber Michelson interferometer measurement system, which employs fiber Bragg gratings (FBGs) as in-fiber reflective mirrors and interleaves together two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the influences resulting from the environmental disturbances, while the other one is used to perform the measurement task. The influences resulting from the environmental disturbances have been eliminated by the compensating action of the electronic feedback loop, this makes the system suitable for on-line precision measurement. By means of the homodyne phase-tracking technique, the linearity of the measurement results of displacement measurements has been very high.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease.
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease. © 2005 Elsevier Ltd. All rights reserved.