895 resultados para 230117 Operations Research
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice
Resumo:
Paper published in PLoS Medicine in 2007.
Resumo:
This paper analyzes a class of common-component allocation rules, termed no-holdback (NHB) rules, in continuous-review assemble-to-order (ATO) systems with positive lead times. The inventory of each component is replenished following an independent base-stock policy. In contrast to the usually assumed first-come-first-served (FCFS) component allocation rule in the literature, an NHB rule allocates a component to a product demand only if it will yield immediate fulfillment of that demand. We identify metrics as well as cost and product structures under which NHB rules outperform all other component allocation rules. For systems with certain product structures, we obtain key performance expressions and compare them to those under FCFS. For general product structures, we present performance bounds and approximations. Finally, we discuss the applicability of these results to more general ATO systems. © 2010 INFORMS.
Resumo:
We describe a general technique for determining upper bounds on maximal values (or lower bounds on minimal costs) in stochastic dynamic programs. In this approach, we relax the nonanticipativity constraints that require decisions to depend only on the information available at the time a decision is made and impose a "penalty" that punishes violations of nonanticipativity. In applications, the hope is that this relaxed version of the problem will be simpler to solve than the original dynamic program. The upper bounds provided by this dual approach complement lower bounds on values that may be found by simulating with heuristic policies. We describe the theory underlying this dual approach and establish weak duality, strong duality, and complementary slackness results that are analogous to the duality results of linear programming. We also study properties of good penalties. Finally, we demonstrate the use of this dual approach in an adaptive inventory control problem with an unknown and changing demand distribution and in valuing options with stochastic volatilities and interest rates. These are complex problems of significant practical interest that are quite difficult to solve to optimality. In these examples, our dual approach requires relatively little additional computation and leads to tight bounds on the optimal values. © 2010 INFORMS.
Resumo:
In this paper, we propose a framework for robust optimization that relaxes the standard notion of robustness by allowing the decision maker to vary the protection level in a smooth way across the uncertainty set. We apply our approach to the problem of maximizing the expected value of a payoff function when the underlying distribution is ambiguous and therefore robustness is relevant. Our primary objective is to develop this framework and relate it to the standard notion of robustness, which deals with only a single guarantee across one uncertainty set. First, we show that our approach connects closely to the theory of convex risk measures. We show that the complexity of this approach is equivalent to that of solving a small number of standard robust problems. We then investigate the conservatism benefits and downside probability guarantees implied by this approach and compare to the standard robust approach. Finally, we illustrate theme thodology on an asset allocation example consisting of historical market data over a 25-year investment horizon and find in every case we explore that relaxing standard robustness with soft robustness yields a seemingly favorable risk-return trade-off: each case results in a higher out-of-sample expected return for a relatively minor degradation of out-of-sample downside performance. © 2010 INFORMS.
Resumo:
This paper considers the problem of sequencing n jobs in a three-machine flow shop with the objective of minimizing the makespan, which is the completion time of the last job. An O(n log n) time heuristic that is based on Johnson's algorithm is presented. It is shown to generate a schedule with length at most 5/3 times that of an optimal schedule, thereby reducing the previous best available worst-case performance ratio of 2. An application to the general flow shop is also discussed.
Resumo:
The paper considers a scheduling model that generalizes the well-known open shop, flow shop, and job shop models. For that model, called the super shop, we study the complexity of finding a time-optimal schedule in both preemptive and non-preemptive cases assuming that precedence constraints are imposed over the set of jobs. Two types of precedence rela-tions are considered. Most of the arising problems are proved to be NP-hard, while for some of them polynomial-time algorithms are presented.
Resumo:
This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.
Resumo:
The paper considers the single machine due date assignment and scheduling problems with n jobs in which the due dates are to be obtained from the processing times by adding a positive slack q. A schedule is feasible if there are no tardy jobs and the job sequence respects given precedence constraints. The value of q is chosen so as to minimize a function ϕ(F,q) which is non-decreasing in each of its arguments, where F is a certain non-decreasing earliness penalty function. Once q is chosen or fixed, the corresponding scheduling problem is to find a feasible schedule with the minimum value of function F. In the case of arbitrary precedence constraints the problems under consideration are shown to be NP-hard in the strong sense even for F being total earliness. If the precedence constraints are defined by a series-parallel graph, both scheduling and due date assignment problems are proved solvable in time, provided that F is either the sum of linear functions or the sum of exponential functions. The running time of the algorithms can be reduced to if the jobs are independent. Scope and purpose We consider the single machine due date assignment and scheduling problems and design fast algorithms for their solution under a wide range of assumptions. The problems under consideration arise in production planning when the management is faced with a problem of setting the realistic due dates for a number of orders. The due dates of the orders are determined by increasing the time needed for their fulfillment by a common positive slack. If the slack is set to be large enough, the due dates can be easily maintained, thereby producing a good image of the firm. This, however, may result in the substantial holding cost of the finished products before they are brought to the customer. The objective is to explore the trade-off between the size of the slack and the arising holding costs for the early orders.
Resumo:
The paper presents an improved version of the greedy open shop approximation algorithm with pre-ordering of jobs. It is shown that the algorithm compares favorably with the greedy algorithm with no pre-ordering by reducing either its absolute or relative error. In the case of three machines, the new algorithm creates a schedule with the makespan that is at most 3/2 times the optimal value.