972 resultados para 2-domain Arginine Kinase
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.
Resumo:
Hundreds of genetic variants in SCN5A, the gene coding for the pore-forming subunit of the cardiac sodium channel, Na(v) 1.5, have been described in patients with cardiac channelopathies as well as in individuals from control cohorts. The aim of this study was to characterize the biophysical properties of 2 naturally occurring Na(v) 1.5 variants, p.R689H and p.R689C, found in patients with cardiac arrhythmias and in control individuals. In addition, this study was motivated by the finding of the variant p.R689H in a family with sudden cardiac death (SCD) in children. When expressed in HEK293 cells, most of the sodium current (I(Na)) biophysical properties of both variants were indistinguishable from the wild-type (WT) channels. In both cases, however, an ∼2-fold increase of the tetrodotoxin-sensitive late I(Na) was observed. Action potential simulations and reconstruction of pseudo-ECGs demonstrated that such a subtle increase in the late I(Na) may prolong the QT interval in a nonlinear fashion. In conclusion, despite the fact that the causality link between p.R689H and the phenotype of the studied family cannot be demonstrated, this study supports the notion that subtle alterations of Na(v) 1.5 variants may increase the risk for cardiac arrhythmias.
Resumo:
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Resumo:
Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.
Resumo:
RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.
Resumo:
Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.
Resumo:
The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.