997 resultados para 1995_04031536 TM-75 4502614
Resumo:
Type 2 diabetes is a disease fast approaching epidemic proportions throughout the world. From insulin sensitizers to PPARg agonists, the lecture will outline the successful medicinal chem. and biol. strategy underpinning the discovery and selection of Avandia, an innovative new medicine for this disease.
Resumo:
The Advanced JAX (TM) Bone Void Filler System (AJBVFS) is a novel bone graft material manufactured by Smith and Nephew Orthopaedics Ltd. and comprises beta tri-calcium phosphate granules with carboxymethylcellulose (CMC) gel as a handling agent. This study investigated the potential, in vitro, of the AJBVFS to function as a delivery system for cell therapy to enhance healing of bone defects. The attachment of rabbit bone marrow stromal cells (rbBMSCs), human BMSCs (hBMSCs) and human bone-derived cells (hBDCs) to JAX (TM) granules and the effect of CMC gel on cell proliferation and differentiation were investigated. There were slight species differences in the number and morphology of cells attached on the JAX (TM) granules with less rbBMSC attachment than human. All cells tolerated the presence of CMC gel and a reduction in cell number was only seen after longer exposure to higher gel concentrations. Low concentrations of CMC gel enhanced proliferation, alkaline phosphatase (ALP) expression and ALP activity in human cells but had no effect on rbBMSC. This study suggests that AJBVFS is an appropriate scaffold for the delivery of osteogenic cells and the addition of CMC gel as a handling agent promotes osteogenic proliferation and differentiation and is therefore likely to encourage bone healing.
Resumo:
Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Pilkington Glass Activ(TM) represents a possible suitable successor to P25 TiO2, especially as a benchmark photocatalyst film for comparing other photocatalyst or PSH self-cleaning films. Activ(TM) is a glass product with a clear, colourless, effectively invisible, photocatalytic coating of titania that also exhibits PSH. Although not as active as a film of P25 TiO2, Activ(TM) vastly superior mechanical stability, very reproducible activity and widespread commercial availability makes it highly attractive as a reference photocatalytic film. The photocatalytic and photo-induced superhydrophilitic (PSH) properties of Activ(TM) are studied in some detail and the results reported. Thus, the kinetics of stearic acid destruction (a 104 electron process) are zero order over the stearic acid range 4-129 monolayers and exhibit formal quantum efficiencies (FQE) of 0.7 X 10(-5) and 10.2 x 10(-5) molecules per photon when irradiated with light of 365 +/- 20 and 254 nm, respectively; the latter appears also to be the quantum yield for Activ(TM) at 254 nm. The kinetics of stearic acid destruction exhibit Langmuir-Hinshelwood-like saturation type kinetics as a function of oxygen partial pressure, with no destruction occurring in the absence of oxygen and the rate of destruction appearing the same in air and oxygen atmospheres. Further kinetic work revealed a Langmuir adsorption type constant for oxygen of 0.45 +/- 0.16 kPa(-1) and an activation energy of 19 +/- 1 Kj mol(-1). A study of the PSH properties of Activ(TM) reveals a high water contact angle (67) before ultra-bandgap irradiation reduced to 0degrees after prolonged irradiation. The kinetics of PSH are similar to those reported by others for sol-gel films using a low level of UV light. The kinetics of contact angle recovery in the dark appear monophasic and different to the biphasic kinetics reported recently by others for sol-gel films [J. Phys. Chem. B 107 (2003) 1028]. Overall, Activ(TM) appears a very suitable reference material for semiconductor film photocatalysis. (C) 2003 Elsevier Science B.V All rights reserved.