998 resultados para 175-1085A
Resumo:
We have analyzed 33 Pliocene bulk sediment samples from Ocean Drilling Program Site 1085 in the Cape Basin, located offshore of western Africa in the Angola-Benguela Current system, for 17 major and trace elements, and interpreted their associations and temporal variations in the context of an allied data set of CaCO3, opal, and Corg. We base our interpretations on elemental ratios, accumulation rates, inter-element correlations, and several multi-element statistical techniques. On the basis of qualitative assessment of downhole changes in the distributions of P and Ba, utilized as proxies of export production, we conclude that highs in bulk and biogenic accumulation that occur at 3.2 Ma, 3.0 Ma, 2.4 Ma, and 2.25 Ma were caused by increases in export production as well as terrigenous flux, and record a greater sequestering of organic matter during these time periods. Studies of refractory elements and other indicator proxies (SiO2, Al2O3, TiO2, Fe2O3, MgO, V, Cr, Sr, and Zr) strongly suggest that the terrigenous component of the bulk sediment is composed of two compositional end-members, one being 'basaltic' in composition and the other similar to an 'average shale'. The basaltic end-member comprises approximately 10-15% of the total bulk sediment and its presence is consistent with the local geology of source material in the drainage basin of the nearby Orange River. The increase in bulk accumulation at 2.4 Ma appears to reflect a greater relative increase in basaltic input than the relative increase in shale-type input. Although studies such as this cannot precisely identify the transport mechanisms of the different terrigenous components, these results are most consistent with variations in sea level (and associated changes in shelf geometry and fluvial input) being responsible for the changing depositional conditions along the Angolan Margin during this time period.
Resumo:
A prominent feature in the Southeast Atlantic is the Angola-Benguela Front (ABF), the convergence between warm tropical and cold subtropical upwelled waters. At present, the sea-surface temperature (SST) gradient across the ABF and its position are influenced by the strength of southeasterly (SE) trade winds. Here, we present a record of changes in the ABF SST gradient over the last 25 kyr. Variations in this SST contrast indicate that periods of strengthened SE trade-wind intensity occurred during the Last Glacial Maximum, the Younger Dryas, and the Mid to Late Holocene, while Heinrich Event 1, the early part of the Bølling-Allerød, and the Early Holocene were periods of weakened SE trade-winds.
Resumo:
Late Quaternary fluctuations in the intensity of Congo River freshwater load were reconstructed using three different proxies (marine and freshwater diatoms, and the delta18O record of Globigerinoides ruber) preserved in the sediments of Ocean Drilling Program (ODP) Site 1077, located at the northern rim of the Congo River fan (5°10'S, 10°26'E). An abrupt change in the diatom assemblage is evident at Termination II: a two- to four-fold increase in (a) the relative abundance of a marine planktonic diatom tolerant of low salinity conditions (Cyclotella litoralis), and (b) in the concentration of freshwater diatoms. The microfossil data suggest a change in the environmental conditions surrounding Site 1077 from predominantly marine to mixed marine/brackish/fresh. The delta18O record of the planktic foraminifera G. ruber (pink) revealed negative deviations from the global oxygen isotope signal since Termination II which occurred during warm stage 1 and substages 3.2, 5.1, 5.3, and 5.5. Comparison of the isotopic signal of ODP Site 1077 with the record from a pelagic location (core GeoB1041 at 3°48'S, 7°05'W) confirms these results. The construction of an artificial delta18O curve using alkenone-derived sea surface temperature (SST) data from a nearby core (GeoB1008 at 6°S, 10°E) allowed us to estimate salinity and temperature effects on the ODP Site 1077 isotopic signal. Although increased SSTs may account for lighter delta18O values during warmer periods, they do not explain the extremely light values documented in the sediments of Site 1077. We used the oxygen isotope difference (Delta delta18O) between our site and GeoB1041 as a proxy for freshwater input. A general trend in the Delta delta18O was observed, with more negative values since Termination II. In addition, conspicuous Delta delta18O negative pulses coincided with periods of northern hemisphere summer insolation maxima over the African continent, suggesting an increase in the freshwater discharge from the Congo River due to enhanced precipitation on the hinterland. Here we propose that the abrupt change in environmental conditions at Site 1077 since Termination II is a consequence of a major reorganization in the depositional environment of the Congo River delta. This reorganization involved sustained equatorward displacement of the Angola-Benguela Front causing a northward deflection of the Congo River plume thus moving plume waters further north than normal and over Site 1077.