875 resultados para 16s rRNA sequencing
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago. The ISME Journal (2010) 4, 989-1001; doi:10.1038/ismej.2010.35; published online 1 April 2010
Resumo:
To investigate the diversity and the catabolic capacity of oil-degrading Klebsiella strains isolated from hydrocarbon-contaminated sediments in Santos-Sao Vicente estuary systems in Brazil. Klebsiella strains obtained from the estuary were characterized using 16S rRNA gene sequencing and BOX-PCR patterns, testing their catabolic capacity to degrade toluene, xylene, naphthalene and nonane, and identifying the catabolic genes present in the oil-degrading strains. Results show that Klebsiella strains were widespread in the estuary. Twenty-one isolates from the Klebsiella genus were obtained; 14 had unique BOX patterns and were further investigated. Among four distinct catabolic genes tested (todC1, ndoB, xylE and alkB1), only the todC1 gene could be amplified in two Klebsiella strains. The biodegradation assay showed that most of the strains had the ability to degrade all of the tested hydrocarbons; however, the strains displayed different efficiencies. The oil-degrading Klebsiella isolates obtained from the estuary were closely related to Klebsiella pneumoniae and Klebsiella ornithinolytica. The isolates demonstrated a substantial degree of catabolic plasticity for hydrocarbon degradation. The results of this study show that several strains from the Klebsiella genus are able to degrade diverse hydrocarbon compounds. These findings indicate that Klebsiella spp. can be an important part of the oil-degrading microbial community in estuarine areas exposed to sewage.
Resumo:
Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal >97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.