992 resultados para 121-758C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently published studies of Ocean Drilling Project (ODP) cores from near southeast Asia revealed microtektite contents much higher than those in previously studied cores, suggesting that Ir contents might be enhanced in the tektite-bearing horizons. We determined a positive Ir anomaly in ODP core 758B from the Ninetyeast Ridge, eastern Indian Ocean; the peak Ir concentration of 190 pg/ g was ~2X the continuum level. The net Ir fluence is 1.8+/-0.5 ng/cm**2 over the depth interval from 10.87 to 11.32 m; a small additional peak also associated with microtektites contributes another 0.5 ng Ir/cm**2. Concentrations of Ir in core 769A show more scatter, but a small Ir enhancement is associated with the peak microtektite abundance; our best estimate of the poorly constrained fluence is 1.3+/-0.7 ng/cm**2. Data on deep-sea cores show that the microtektite fluence falls exponentially away from southeast Asia, the fluence dropping a factor of 2 in ~400 km. In southeast Asia the trend merges with a roughly estimated mass fluence of ~1.1 g/cm**2 inferred from evidence of a melt sheet in northeast Thailand. Integration of the inferred distribution yields a total mass of Australasian tektites of 3.2x10**16 g, much higher than previous estimates. Assuming a similar fallout distribution for the impactor and a chondritic composition allows us to calculate its mass to be 1.5x10**15 g, about 3 orders of magnitude smaller than the minimum mass of the impactor responsible for the extinctions at the end of the Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotopic records have been developed for the Cenozoic carbonate oozes of Sites 752, 754, 756, and 757 based on the analysis of monospecific benthic foraminifers. The intent of this report is to provide a basic isotopic stratigraphy for use in other paleoceanographic studies. The oxygen isotope record displays the enrichments associated with cooling or ice volume buildup at the Eocene/Oligocene boundary, in the middle Miocene, and in the upper Pliocene. The carbon isotopic record contains the Chron 16 enrichment in the lower Miocene and the Chron 6 depletion in the uppermost Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study involves the analysis and interpretation of geochemical data from a suite of sediment samples recovered at ODP Hole 752A. The samples encompass the time period that includes the lithospheric extension and uplift of Broken Ridge, and they record deposition below and above the mid-Eocene angular unconformity that denotes this uplift. A Q-mode factor analysis of the geochemical data indicates that the sediments in this section are composed of a mixture of three geochemical end members that collectively account for 94.2% of the total variance in the data. An examination of interelement ratios for each of these end members suggests that they represent the following sedimentary components: (1) a biogenic component, (2) a volcanogenic component, and (3) a hydrothermal component. The flux of the biogenic component decreases almost thirtyfold across the Eocene unconformity. This drastic reduction in the deposition of biogenic materials corresponds to the almost complete disappearance of chert layers, diatoms, and siliceous microfossils and is coincident with the uplift of Broken Ridge. The volcanogenic component is similar in composition to Santonian ash recovered at Hole 755A on Broken Ridge and is the apparent source of the Fe-stained sediment that immediately overlies the angular unconformity. This finding suggests that significant amounts of Santonian ash were subaerially exposed, weathered, and redeposited and is consistent with data that suggest that the vertical uplift of Broken Ridge was both rapid and extensive. The greatest flux of hydrothermal materials is recorded in the sediments immediately below the angular unconformity. This implies that the uplift of Broken Ridge was preceded by a significant amount of rifting, during which faulting and fracturing of the lithosphere led to enhanced hydrothermal circulation. This time sequence of events is consistent with (but not necessarily diagnostic of) the passive model of lithospheric extension and uplift.