962 resultados para 060403 Developmental Genetics (incl. Sex Determination)
Resumo:
The detailed, rich and diverse Argaric funerary record offers an opportunity to explore social dimensions that usually remain elusive for prehistoric research, such us social rules on kinship rights and obligations, sexual tolerance and the role of funerary practices in preserving the economic and political organization. This paper addresses these topics through an analysis of the social meaning of Argaric double tombs by looking at body treatment and composition of grave goods assemblages according to gender and class affiliation. The Argaric seems to have been a conservative society, scarcely tolerant regarding homosexuality, and willing to celebrate ancestry associated to certain places as a means of asserting residence and property rights.
Resumo:
[EN] A nesting population of loggerhead sea turtles Caretta caretta has recently been described for Boa Vista Island, Cape Verde Archipelago (Western Africa). Since 1998, “Projecto Cabo Verde Natura 2000” has monitored three beaches during the turtle breeding season. The beaches being monitored - Calheta, Errata and Ponta Cosme - are located in the southeast part of Boa Vista Island. This work intends to give a first insight into the Boa Vista Island sea turtle population’s sex ratio using a histological approach, as sexual determination in sea turtles is known to be temperature-dependent (TSD or temperature-dependent sex determination).
Resumo:
[EN] Global warming can affect nesting success of sea turtles due to the rise of the sea level and the subsequent increased inundation or erosion of nesting beaches. Moreover, it can reduce male production to levels that can alter reproduction due to their temperature dependant sex determination (TSD). Now, mean nest temperatures all around the world predict a predominance of female hatchlings, and this trend may increase with global warming in the next decades.
Phylum-wide transcriptome analysis of oogenesis and early embryogenesis in selected nematode species
Resumo:
Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.
Resumo:
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.
Resumo:
The black-lip pearl oyster Pinctada margaritifera is a protandrous hermaphrodite species. Its economic value has led to the development of controlled hatchery reproduction techniques, although many aspects remain to be optimized. In order to understand reproductive mechanisms and their controlling factors, two independent experiments were designed to test hypotheses of gametogenesis and sex ratio control by environmental and hormonal factors. In one, pearl oysters were exposed under controlled conditions at different combinations of temperature (24 and 28°C) and food level (10,000 and 40,000 cells mL−1); whereas in the other, pearl oysters were conditioned under natural conditions into the lagoon and subjected to successive 17β-estradiol injections (100 μg per injection). Gametogenesis and sex ratio were assessed by histology for each treatment. In parallel, mRNA expressions of nine marker genes of the sexual pathway (pmarg-foxl2, pmarg-c43476, pmarg-c45042, pmarg-c19309, pmarg-c54338, pmarg-vit6, pmarg-zglp1, pmarg-dmrt, and pmarg-fem1-like) were investigated. Maximum maturation was observed in the treatment combining the highest temperature (28°C) and the highest microalgae concentration (40,000 cells mL−1), where the female sex tended to be maintained. Injection of 17β-estradiol induced a significant increase of undetermined stage proportion 2 weeks after the final injection. These results suggest that gametogenesis and gender in adult pearl oysters can be controlled by environmental factors and estrogens. While there were no significant effects on relative gene expression, the 3-gene-pair expression ratio model of the sexual pathway of P. margaritifera, suggest a probable dominance of genetic sex determinism without excluding a mixed sex determination mode (genetic + environmental)
Resumo:
With the great development of the gestational studies in all of the species, we noticed the necessity of adaptations of these techniques for prenatal diagnosis in dogs. Based on this, we studied the feasibility of chorion biopsy guided by ultrasound. Our results demonstrated accuracy on the sex determination being 2 males and 12 females, as well as it would be possible to identify chromosome alteration due to the quality of samplings. Sex determination was accomplished with the identification of Y gene chromosomes in PCR technique. After the collection, fragments were prepared for light microscopy studies and revealed fetal chorion tissue, blood colloid and erythrocyte. In the whole material we found hemosiderin impregnations due to the hemolysis and to the residue of blood of the placental marginal hematomes. The submitted female dogs to this technique demonstrated normal puppy births without death.
Resumo:
Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.
Resumo:
Temperature was monitored in three natural nests, and oxygen and carbon dioxide partial pressure monitored in one natural nest of the broad-shelled river turtle, Chelodina expansa, throughout incubation. Nest temperature decreased after nest construction in autumn, remained low during winter and gradually increased in spring to a maximum in summer. In a nest where temperature was recorded every hour, temperature typically fluctuated through a 2 degrees C cycle on a daily basis throughout the entire incubation period, and the nest always heated faster than it cooled. Oxygen and carbon dioxide partial pressures in this nest were similar to soil oxygen and carbon dioxide partial pressures for the first 5 months of incubation, but nest respiratory gas tensions deviated from the surrounding soil over the last three months of incubation. Nest respiratory gas tensions were not greatly different from those in the atmosphere above the ground except after periods of rain. After heavy rain during the last 3 months of incubation the nest became moderately hypoxic (P-O2 similar to 100 Torr) and hypercapnic (P-CO2 similar to 50 Torr) for several successive days. These short periods of hypoxia and hypercapnia were not lethal.
Resumo:
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Resumo:
Contents Sex pre-selection of bovine offsprings has commercial relevance for cattle breeders and several methods have been used for embryo sex determination. Polymerase chain reaction (PCR) has proven to be a reliable procedure for accomplishing embryo sexing. To date, most of the PCR-specific primers are derived from the few single-copy Y-chromosome-specific gene sequences already identified in bovines. Their detection demands higher amounts of embryonic genomic material or a nested amplification reaction. In order to circumvent this, limitation we searched for new male-specific sequences potentially useful in embryo sexing using random amplified polymorphic DNA (RAPD) analysis. Random amplified polymorphic DNA (RAPD) assay reproducibility problems can be overcome by its conversion into Sequence Characterized Amplified Region (SCAR) markers. In this work, we describe the identification of two bovine male-specific markers (OPC16(323) and OPF10(1168)) by means of RAPD. These markers were successfully converted into SCARs (OPC16(726) and OPF10(984)) using two pairs of specific primers.Furthermore, inverse PCR (iPCR) methodology was successfully applied to elongate OPC16(323) marker in 159% (from 323 to 837 bp). Both markers are shown to be highly conserved (similarity >= 95%) among bovine zebu and taurine cattle; OPC16(323) is also highly similar to a bubaline Y-chromosome-specific sequence. The primers derived from the two Y-chromosome-specific conserved sequences described in this article showed 100% accuracy when used for identifying male and female bovine genomic DNA, thereby proving their potential usefulness for bovine embryo sexing.
Resumo:
Rigid-shelled eggs of the broad-shelled river turtle Chelodina expansa were incubated at 28 degreesC in wet (-100 kPa), intermediate (-350 kPa) and dry (-750 kPa) conditions. Incubation period was influenced by clutch of origin, but was independent of incubation water potential. Rates of water gained from the environment and pre-pipping egg mass were influenced by incubation water potential - eggs incubating at higher (less negative) water potentials absorbing more water from their environment. Hatchlings from wet conditions had greater mass but a smaller amount of residual yolk than hatchlings from dry conditions and it is suggested that the amount of yolk converted to tissue is influenced by the amount of water absorbed by the egg during incubation. Water content of yolk-free hatchlings from the -100-kPa treatment was greater than those from the 350-kPa and -750-kPa treatments, but the water content of residual yolks was similar across all hydric conditions.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology