917 resultados para yeast one-hybrid
Resumo:
The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.
Resumo:
The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.
Resumo:
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed.
Resumo:
Fertilization is a multistep and complex process culminating in the merge of gamete membranes, cytoplasmic unity and fusion of genome. CD81 is a tetraspanin protein that participates in sperm-oocyte interaction, being present at the oocyte surface. CD81 has also been implicated in other biological processes, however its specific function and molecular mechanisms of action remain to be elucidated. The interaction between CD81 and its binding partner proteins may underlie the CD81 involvement in a variety of cellular processes and modulate CD81/interactors specific functions. Interestingly, in a Yeast two Hybrid system previously performed in our lab, CD81 has emerged as a putative interactor of the Amyloid Precursor Protein (APP). In the work here described, bioinformatics analyses of CD81 interacting proteins were performed and the retrieved information used to construct a protein-protein interaction network, as well as to perform Gene Ontology enrichment analyses. CD81 expression was further evaluated in CHO, GC-1 and SH-SY5Y cell lines, and in human sperm cells. Additionally, its subcellular localization was analyzed in sperm cells and in the neuronal-like SH-SY5Y cell line. Subsequently, coimmunoprecipitation assays were performed in CHO and SH-SY5Y cells to attempt to prove the physical interaction between CD81 and APP. A functional interaction between these two proteins was accessed thought the analyses of the effects of CD81 overexpression on APP levels. A co-localization analysis of CD81 and some interactors proteins retrieved from the bioinformatics analyses, such as APP, AKT1 and cytoskeleton-related proteins, was also performed in sperm cells and in SH-SY5Y cells. The effects of CD81 in cytoskeleton remodeling was evaluated in SH-SY5Y cells through monitoring the effects of CD81 overexpression in actin and tubulin levels, and analyzing the colocalization between overexpressed CD81 and F-actin. Our results showed that CD81 is expressed in all cell lines tested, and also provided the first evidence of the presence of CD81 in human sperm cells. CD81 immunoreactivity was predominantly detected in the sperm head, including the acrosome membrane, and in the midpiece, where it co-localized with APP, as well as in the post-acrosomal region. Furthermore, CD81 co-localizes with APP in the plasma membrane and in cellular projections in SH-SY5Y cells, where CD81 overexpression has an influence on APP levels, also visible in CHO cells. The analysis of CD81 interacting proteins such as AKT1 and cytoskeletonrelated proteins showed that CD81 is involved in a variety of pathways that may underlie cytoskeleton remodeling events, related to processes such as sperm motility, cell migration and neuritogenesis. These results deepen our understanding on the functions of CD81 and some of its interactors in sperm and neuronal cells.
Resumo:
Since its identification in the 1990s, the RNA interference (RNAi) pathway has proven extremely useful in elucidating the function of proteins in the context of cells and even whole organisms. In particular, this sequence-specific and powerful loss-of-function approach has greatly simplified the study of the role of host cell factors implicated in the life cycle of viruses. Here, we detail the RNAi method we have developed and used to specifically knock down the expression of ezrin, an actin binding protein that was identified by yeast two-hybrid screening to interact with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) spike (S) protein. This method was used to study the role of ezrin, specifically during the entry stage of SARS-CoV infection.
Resumo:
Strawberry fruits are highly appreciated worldwide due to their pleasant flavor and aroma and to the health benefits associated to their consumption. An important part of these properties is due to their content in secondary metabolites, especially phenolic compounds, of which flavonoids are the most abundant in the strawberry fruit. Although the flavonoid biosynthesis pathway is uncovered, little is known about its regulation. The strawberry Fra a (Fra) genes constitute a large family of homologs of the major birch pollen allergen Bet v 1 and for which no equivalents exist in Arabidopsis. Our group has shown that Fra proteins are involved in the formation of colored compounds in strawberries (Muñoz et al., 2010), which mainly depends on the production of certain flavonoids; that they are structurally homologs to the PYR/PYL/RCAR Arabidopsis ABA receptor, and that they are able to bind flavonoids (Casañal et al., 2013). With these previous results, our working hypothesis is that the Fra proteins are involved in the regulation of the flavonoids pathway. They would mechanistically act as the ABA receptor, binding a protein interactor and a ligand to regulate a signaling cascade and/or act as molecular carriers. The main objective of this research is to characterize the Fra family in strawberry and gain insight into their role in the flavonoid metabolism. By RNAseq expression analysis in ripening fruits we have identified transcripts for 10 members of the Fra family. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each Fra protein. Then, our next approach was to identify the proteins that interact with Fras and their ligands to gain knowledge on the role that these proteins play in the flavonoids pathway. To identify the interacting partners of Fras we have performed a yeast two hybrid (Y2H) screening against cDNA libraries of strawberry fruits at the green and red stages. A protein that shares a 95% homology to the Heat stress transcription factor A-4-C like of Fragaria vesca (HSA4C) interacts specifically with Fra1 and not with other family members, which suggests functional diversification of Fra proteins in specific signaling pathways. The Y2H screening is not yet saturated, so characterization of other interacting proteins with other members of the Fra family will shed light on the functional diversity within this gene family. This research will contribute to gain knowledge on how the flavonoid pathway, and hence, the fruit ripening, is regulated in strawberry; an economically important crop but for which basic research is still very limited. References: Muñoz, C, et al. (2010). The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 3(1): 113–124. Casañal, A, et al (2013). The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding Metabolic Intermediates. Journal of Biological Chemistry, 288(49): 35322–35332.
Resumo:
Este estudo foi realizado para descrever o efeito da reversão sexual de linhagens de tilápia sobre as taxas de sobrevivência, o crescimento e o percentual de machos fenotípicos em condições ambientais variáveis. Foram utilizadas duas linhagens de Oreochromis niloticus (tilápia-do-nilo comum e tailandesa) e uma híbrida Oreochromis sp (vermelha), que receberam o hormônio masculinizante 17-α-metiltestosterona incorporado à ração (60 mg/kg) durante os primeiros 30 dias de vida. Aos 90 dias de idade, a taxa de sobrevivência da tilápia-do-nilo comum superou a da tilápia tailandesa em 39,00% e da tilápia vermelha em 22,70%, enquanto a taxa instantânea de crescimento foi similar nas linhagens comum e tailandesa e significativamente inferior na linhagem vermelha. O percentual de machos, de acordo com o exame de gônadas, decresceu na seguinte ordem: tilápia-do-nilo comum, tailandesa e vermelha. em situações de oscilação de temperatura, a linhagem comum tem maior desempenho produtivo, mas são necessários estudos para comprovação da pureza genética e análise do manejo reprodutivo de linhagens de tilápia.
Resumo:
Thesis (Master, Biology) -- Queen's University, 2016-09-29 20:09:46.997
Resumo:
Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer's disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.
Resumo:
Considering the influence of herbicides in the metabolism of the carotenoids in corn, the objective of the present study was to evaluate the effect of herbicides and genotype on carotenoids concentration. The green corn hybrids BRS 1030 and P30F53 were subjected to a post-emergent herbicides application at 20 and 30 days after emergence. Carotenoids were extracted from corn grains and analyzed to quantify ?- and ?-carotene, lutein, zeaxanthin, ?-cryptoxanthin, total carotenoids (TC), and total of vitamin A carotenoids precursors (proVA). The application of foramsulfuron + iodosulfuron-methyl-sodium (40 + 2.6 g ha-1), nicosulfuron (20 g ha-1), mesotrione (120 g ha-1) and tembotrione (80 g ha-1 and 100 g ha-1) promoted higher concentration of carotenoids in fresh green corn. Lutein, zeaxanthin, ?-cryptoxanthin, ?-carotene, ?-carotene, proVA carotenoids, and TC concentration increased after foramsulfuron + iodosulfuron-methyl-sodium in late application (V5 to V6), nicosulfuron in both applications, mesotrione applied post-initial (V3 to V4), tembotrione (100 g ha-1) in both applications and tembotrione (80 g ha-1) in late post-application, at least for one hybrid. The content of carotenoids in the green corn kernels differed between ?BRS 1030? and ?P30F53?. Our results suggest a possibility of significant increase of carotenoids in green corn kernels through the handling of corn production with post-emergent herbicides.
Resumo:
Protein–protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the ≈6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623–627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
Resumo:
We report a new protocol for the synthesis of M@rGO (M = Au, Pt, Pd, Ag and rGO = reduced graphene oxide) hybrid nanostructures at room temperature in Zn-acid medium. The roles of Zn-acid are to reduce the GO by generated hydrogen and the deposition of metal nanoparticles on rGO by galvanic replacement reaction between Zn and Mn+.
Resumo:
A novel dual-slab laser with off-axis one-sided hybrid resonator is presented. The mode properties of the hybrid resonator are calculated using a fast Fourier transform method (FFT). The influence of wavefront distoration on the output beam quality is considered. Results indicate that the novel dual-slab laser is better than the normal dual-slab laser with off-axis one-sided hybrid resonator.