995 resultados para wheat form
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Cereal kernels are known to contain a number of minor components that possess beneficial health attributes. In this thesis rye and wheat were studied as sources of steryl ferulates and steryl glycosides and their behaviour in processing were evaluated. Further, enzymatic hydrolysis of these conjugates was studied, as well as the capacity of steryl ferulates to inhibit lipid oxidation at different temperatures. Steryl ferulates were shown to have a strong positive correlation with dietary fibre contents in milling fractions from the outer parts of the kernels obtained from a commercial scale mill. Highest contents of steryl ferulates were found in the bran in both cereals, with the content decreasing once moving towards the inner parts of the kernel. Variation in the contents of steryl ferulates was higher in wheat fractions than rye fractions. Steryl glycosides, on the other hand, had either negative or no correlation with dietary fibre, and the range of the steryl glycoside contents was much narrower than that of steryl ferulates in both cereals. There were significant differences in the sterol compositions of these steryl conjugates when compared with each other or with the total plant sterols in the corresponding fractions. Properties of steryl ferulates and steryl glycosides were evaluated after common processing methods and in enzymatic hydrolysis. Thermal and mechanical processing had only minor or no effects on the contents of steryl conjugates from rye and wheat bran. Enzymatic treatments on the other hand caused some changes, especially in the contents of glycosylated sterols. When steryl ferulates extracted from rye or wheat bran were subjected to enzymatic treatments by steryl esterase, significant differences in the rates of hydrolysis were observed between steryl ferulates from different sources with differing sterol compositions. Further, differences were also observed between enzymes from different sources. Steryl glycosides were shown to be hydrolysed by β-glucosidase (cellobiase) from A. niger, but less with β-glucosidases from other sources. Steryl ferulates showed good antioxidant activity at both moderate and high temperatures. In bulk and emulsion systems of methyl linoleate at 40°C steryl ferulates extracted from rye and wheat bran inhibited hydroperoxide formation much more effectively than synthetic steryl ferulates or those extracted from rice (γ-oryzanol), demonstrating that the sterol composition has an effect on the activity. At cooking (100°C) and frying temperatures (180°C) sitostanyl ferulate was shown to inhibit polymer formation significantly and, especially at 100°C, comparably to α-tocopherol. The rate of antioxidant degradation was slower for sitostanyl ferulate, showing higher heat stability than α-tocopherol. When evaluated as a mixture, no synergistic effect was observed between these two antioxidants. The data presented in this thesis provides information that may henceforth be applied when evaluating the intakes of steryl conjugates from cereal sources, as well as their possible influences as minor bioactive components. Wheat and rye both are good sources of steryl ferulates and steryl glycosides and, especially with steryl ferulates, what may be lost out to some other cereals on quantity is compensated with quality of the sterol composition.
Resumo:
Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
Two key quality traits in milling wheat are flour yield (FY) and water absorption (WA). Ideally, breeders would prefer to use markers to select promising lines rather than time consuming rheology tests. In this study, we measured FY and WA on a wheat mapping population (Lang/QT8766) of 162 individuals grown in two replicated field experiments at three locations over 2 years. We also carried out near infrared reflectance spectroscopy (NIRS) predictions on the grain for these traits to see if NIRS phenotypic data could provide useful mapping results when compared to the reference phenotypic data. Several common QTLs were identified for FY and WA by both sets of data. The QTL on chromosome 4D was a consistently recurring QTL region for both traits. The QTL on chromosome 2A was positively linked to protein content which was supported by genetic correlation data. The results also indicated it was possible to obtain useful phenotypic data for mapping FY and WA using NIRS data. This would save time and costs as NIRS is quicker and cheaper than current rheology methods.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Concepts of agricultural sustainability and possible roles of simulation modelling for characterising sustainability were explored by conducting, and reflecting on, a sustainability assessment of rain-fed wheat-based systems in the Middle East and North Africa region. We designed a goal-oriented, model-based framework using the cropping systems model Agricultural Production Systems sIMulator (APSIM). For the assessment, valid (rather than true or false) sustainability goals and indicators were identified for the target system. System-specific vagueness was depicted in sustainability polygons-a system property derived from highly quantitative data-and denoted using descriptive quantifiers. Diagnostic evaluations of alternative tillage practices demonstrated the utility of the framework to quantify key bio-physical and chemical constraints to sustainability. Here, we argue that sustainability is a vague, emergent system property of often wicked complexity that arises out of more fundamental elements and processes. A 'wicked concept of sustainability' acknowledges the breadth of the human experience of sustainability, which cannot be internalised in a model. To achieve socially desirable sustainability goals, our model-based approach can inform reflective evaluation processes that connect with the needs and values of agricultural decision-makers. Hence, it can help to frame meaningful discussions, from which actions might emerge.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.
Resumo:
Pratylenchus thornei is a major pathogen of wheat crops in the northern grain region of Eastern Australia with an estimated annual yield loss of $38 million. Damaged crops show symptoms of water and nutrient stress that suggest uptake is significantly affected. In order to understand the mechanisms involved in reducing water uptake and consequently plant yield, detailed measurements of water extraction and leaf area were conducted on a range of wheat cultivars with differing levels of tolerance and resistance to P. thornei.
Resumo:
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.
Resumo:
As the importance of plant-based antioxidants to human health becomes clearer there is a rapidly expanding search for rich sources of these compounds. Much attention is currently focussed on the antioxidant potential of ellagic acid (EA). Making assessment difficult is that EA occurs in different forms: free EA, EA glycosides and polymeric ellagitannins. The overall structure of these forms has a pronounced effect on their antioxidant efficiency and is responsible for widely differing reactivity, solubility and hence bioavailability properties. Often associated with EA is vitamin C which also contributes to the plant foods total antioxidant activity. Previous studies have suggested that ascorbic acid may have protective effects on the polyphenol content of plants. With a view to gaining evidence that the bioactive forms of vitamin C influence EA content, several fruits with a range of EA and vitamin C contents were examined. To facilitate a more detailed assessment of the selected fruits antioxidant potential the relative proportions of EA forms were also determined. In strawberries and boysenberries EA content was predominantly in the polymeric form (21% and 12% free EA plus EA glycoside vs total EA levels for strawberry and boysenberry respectively), while in Kakadu plum it was mainly in the free form (70% of total EA). An increasing percentage of dehydroascorbic acid (9 to 14% of total vitamin C) indicating enhanced transformation of ascorbic acid to its oxidative degradation product together with stable free EA levels (≈ 950 mg/100 g DW) over the 4 month frozen storage period for the Kakadu plum samples are consistent with a possible protective effect of EA by ascorbic acid.
Resumo:
Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
A recently developed spot form of blotch differential set of 16 barley lines was tested for reaction response to 60 Pyrenophora teres f. maculata isolates from geographically disperse barley crops of Australia. Twelve barley lines (Arimont, Barque, Chebec, CI5286, CI5791, CI9214, CII6150, Dairokkaku, Esperance Orge 289, Galleon, Keel, Skiff, Torrens and TR250) provided differential response between the isolates. The susceptible controls Gairdner and Kombar provided indication of isolate virulence or avirulence. Abundant pathogenic diversity was revealed with 33 designated pathotypes, some of which related to geographic region. AFLP analysis also revealed abundant diversity with each of the isolates representing a unique genotype and one isolate that contained both AFLP bands unique to P. teres f. maculata and P. teres f. teres, the cause of spot form and net form of net blotch respectively, suggesting that sexual recombination between the net form and spot form isolates may have occurred naturally in the field.