994 resultados para volcanic eruption
Resumo:
During tooth eruption, structural and functional changes must occur in the lamina propria to establish the eruptive pathway. In this study, we evaluate the structural changes that occur during lamina propria degradation and focus these efforts on apoptosis and microvascular density. Fragments of maxilla containing the first molars from 9-, 11-, 13- and 16-day-old rats were fixed, decalcified and embedded in paraffin. The immunohistochemical detection of vascular endothelial growth factor (VEGF), caspase-3 and MAC387 (macrophage marker), and the TUNEL method were applied to the histological molar sections. The numerical density of TUNEL-positive cells and VEGF-positive blood vessel profiles were also obtained. Data were statistically evaluated using a one-way anova with the post-hoc Kruskal-Wallis or Tukey test and a significance level of P ≤ 0.05. Fragments of maxilla were embedded in Araldite for analysis under transmission electron microscopy (TEM). TUNEL-positive structures, fibroblasts with strongly basophilic nuclei and macrophages were observed in the lamina propria at all ages. Using TEM, we identified processes of fibroblasts or macrophages surrounding partially apoptotic cells. We found a high number of apoptotic cells in 11-, 13- and 16-day-old rats. We observed VEGF-positive blood vessel profiles at all ages, but a significant decrease in the numerical density was found in 13- and 16-day-old rats compared with 9-day-old rats. Therefore, the establishment of the eruptive pathway during the mucosal penetration stage depends on cell death by apoptosis, the phagocytic activity of fibroblasts and macrophages, and a decrease in the microvasculature due to vascular cell death. These data point to the importance of vascular rearrangement and vascular neoformation during tooth eruption and the development of oral mucosa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract Yellowstone National Park is located over a hot spot under the North American tectonic plate and holds a potentially explosive super-volcano that has the ability to cause deadly consequences on the North American continent. After an eruption the surrounding region would see the greatest devastation, covered by pyroclastic deposits and thick ash fall exterminating most all life and destroying all structures in its path. In landscapes of greater distance from the event the consequences will be less dramatic yet still substantial. Records of previous eruption data from the Yellowstone super-volcano show that the ash fall out from the eruption can cover areas as large as one million square kilometers and could leave Nebraska covered in ash up to 10 centimeters thick. This would cause destruction of agriculture, extensive damage to structures, decreased temperatures, and potential respiratory hazards. The effects of volcanic ash on the human respiratory system have been shown to cause acute symptoms from heavy exposure. Symptoms include nasal irritation, throat irritation, coughing, and if preexisting conditions are present some can develop bronchial symptoms, which can last for a few days. People with bronchitis and asthma are shown to experience airway irritation and uncomfortable breathing. In most occurrences, exposure of volcanic ash is too short to cause long-term health hazards. Wearing facial protection can alleviate much of the symptoms. Most of the long-term ramifications of the eruption will be from the atmospheric changes caused from disruption of solar radiation, which will affect much of the global population. The most pertinent concerns for Nebraska citizens are from the accumulation of ash deposits over the landscape and the climatic perturbations. Potential mitigation procedures are essential to prepare our essentially unaware population of the threat that they may soon face if the volcano continues on its eruption cycle.
Resumo:
The north-western sector of the Gharyan volcanic field (northern Libya) consists of trachytic-phonolitic domes emplaced between similar to 41 and 38 Ma, and small-volume mafic alkaline volcanic centres (basanites, tephrites. alkali basalts. hawaiites and rare benmoreites) of Middle Miocene-Pliocene age (similar to 12-2 Ma). Two types of trachytes and phonolites have been recognized on the basis of petrography, mineralogy and geochemistry. Type-1 trachytes and phonolites display a smooth spoon-shaped REE pattern without negative Europium anomalies. Type-2 trachytes and phonolites show a remarkable Eu negative anomaly, higher concentration in HFSE (Nb-Ta-Zr-Hf), REE and Ti than Type-1 rocks. The origin of Type-1 trachytes and phonolites is compatible with removal of clinopyroxene, plagioclase, alkali feldspar, amphibole. magnetite and titanite starting from benmoreitic magmas. found in the same outcrops. Type-2 trachytes and phonolites could be the result of extensive fractional crystallization starting from mafic alkaline magma, without removal of titanite. In primitive mantle-normalized diagrams, the mafic rocks (Mg#= 62-68, Cr up to 514 ppm, Ni up to 425 ppm) show peaks at Nb and Ta and troughs at K. These characteristics, coupled with low Sr-87/Sr-86(i) (0.7033-0.7038) and positive epsilon(Nd) (from +4.2 to + 5.3) features typical of the mafic anorogenic magmas of the northern African plate and of HIMU-OIB-like magma in general. The origin of the mafic rocks is compatible from a derivation from low degree partial melting (3-9%) shallow mantle sources in the spinel/gamet facies. placed just below the rigid plate in the uppermost low-velocity zone. The origin of the igneous activity is considered linked to passive lithospheric thinning related to the development of continental rifts like those of Sicily Channel (e.g.. Pantelleria and Linosa) and Sardinia (e.g., Campidano Graben) in the Central-Western Mediterranean Sea. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ectopic eruption of maxillary canines can be associated with root resorption of adjacent teeth. This case report describes and discusses an interesting case of a 15-year-old girl with a Class III malocclusion and an impacted maxillary canine. Because of the unfavorable position of the ectopic canine and the severe root resorption of the maxillary left central and lateral incisors, the treatment options included extraction of the maxillary permanent canines. The mandibular first premolars were extracted to compensate for the Class III malocclusion. A panoramic radiograph taken earlier in the mixed dentition already indicated a possible eruption disturbance of the maxillary left permanent canine. The importance of early diagnosis of maxillary canine ectopic eruption is highlighted in this case report. The early identification of radiographic signs of an ectopic pathway of eruption should be followed by deciduous canine extraction to prevent canine retention and maxillary incisor root resorption. (Am J Orthod Dentofacial Orthop 2012;142:256-63)
Resumo:
Eruption sequestrum is an uncommon disturbance in eruption and consists of small fragments of calcified tissue overlying the crowns of erupting permanent molar teeth, especially at the time of eruption of the mandibular first molars. This paper reports a case of unilateral eruption sequestrum in a 7-year-old Brazilian boy and describes its histopathological findings. A white small fragment, 0.5 cm in diameter, with hard consistency, irregular shape and located on the occlusal surface of the erupting mandibular left first molar was excised. Microscopic examination revealed large trabeculae with empty lacunae and a minimal amount of existing spongy bone consisting of acute inflammatory cells (neutrophils). Signs of necrosis were found on the periphery. The histological analysis was consistent with non-vital bone and the diagnosis of eruption sequestrum was established. Clinical and radiographic follow-up visits scheduled at short intervals and then every 6 months revealed normal postoperative conditions.