977 resultados para valley splitting
Resumo:
Two new multi-proxy records of environmental change are provided from Horton Kirby Paper Mill and Old Seager Distillery in the Lower Thames Valley. Each site has evidence for a decline in elm woodland, which at Horton Kirby Paper Mill is recorded earlier than any other published record from the British Isles: sometime between 7320 and 7240 cal BP. Scolytus scolytus/S. multistriatus (the vectors for Dutch elm disease) are recorded after the decline in both sequences, adding to the number of sites with such evidence in the British Isles. Evidence of paludification and human activity are also recorded at the time of the elm decline reinforcing the multi-causal hypothesis. Integration of these results with 21 palaeoenvironmental records has produced a large number of well-dated, multiproxy records of the elm decline in this part of the UK. On the basis of this dataset, a classification system for categorising the relationships between the causal factors of the elm decline is proposed and recommended for future studies.
Resumo:
Deposit modelling based on archived borehole logs supplemented by a small number of dedicated boreholes is used to reconstruct the main boundary surfaces and the thickness of the main sediment units within the succession of Holocene alluvial deposits underlying the floodplain in the Barking Reach of the Lower Thames Valley. The basis of the modelling exercise is discussed and the models are used to assess the significance of floodplain relief in determining patterns of sedimentation. This evidence is combined with the results of biostratigraphical and geochronological investigations to reconstruct the environmental conditions associated with each successive stage of floodplain aggradation. The two main factors affecting the history and spatial pattern of Holocene sedimentation are shown to be the regional behaviour of relative sea level and the pattern of relief on the surface of the sub-alluvial, Late Devensian Shepperton Gravel. As is generally the case in the Lower Thames Valley, three main stratigraphic units are recognised, the Lower Alluvium, a peat bed broadly equivalent to the Tilbury III peat of Devoy (1979) and an Upper Alluvium. There is no evidence to suggest that the floodplain was substantially re-shaped by erosion during the Holocene. Instead, the relief inherited from the Shepperton Gravel surface was gradually buried either by the accumulation of peat or by deposition of fine-grained sediment from suspension in standing or slow-moving water. The palaeoenvironmental record from Barking confirms important details of the Holocene record observed elsewhere in the Lower Thames Valley, including the presence of Taxus in the valley-floor fen carr woodland between about 5000 and 4000 cal BP, and the subsequent growth of Ulmus on the peat surface.
Resumo:
Multi-proxy analyses from floodplain deposits in the Colne Valley, southern England, have provided a palaeoenvironmental context for the immediately adjacent Terminal Upper Palaeolithic and Early Mesolithic site of Three Ways Wharf. These deposits show the transition from an open cool environment to fully developed heterogeneous floodplain vegetation during the Early Mesolithic. Several distinct phases of burning are shown to have occurred that are chronologically contemporary with the local archaeological record. The floodplain itself is shown to have supported a number of rare Urwaldrelikt insect species implying human manipulation of the floodplain at this time must have been limited or episodic. By the Late Mesolithic a reed-sedge swamp had developed across much of the floodplain, within which repeated burning of the in situ vegetation took place. This indicates deliberate land management practices utilising fire, comparable with findings from other floodplain sequences in southern Britain. With similar sedimentary sequences known to exist across the Colne Valley, often closely associated with contemporary archaeology, the potential for placing the archaeological record within a spatially explicit palaeoenvironmental context is great.
Resumo:
All Agulhas rings that were spawned at the Agulhas retrofiec- tion between 1993 and 1996 (a total of 21 rings) have been monitored using TOPEX/Poseidon satellite altimetry and followed as they moved through the southeastern Atlantic Ocean, decayed, interacted with bottom topography and each other, or dissipated completely. Rings preferentially crossed the Walvis Ridge at its deepest parts. After having crossed this ridge they have lower translational speeds, and their decay rate decreases markedly. Half the decay of long-lived rings takes place in the first 5 months of their lifetimes. In addition to the strong decay of rings in the Cape Basin, about one third of the observed rings do not seem to leave this region at all but totally disintegrate here. The interaction of rings with bottom topography, in particular with the Verna Seamount, is shown frequently to cause splitting of rings. This will enhance mixing of the rings' Indian Ocean water into that of the southern Atlantic. This localized mixing may well provide a considerable source of warm and salty Indian Ocean water into the Atlantic overturning circulation.
Resumo:
Rotationally-split modes can provide valuable information about the internal rotation profile of stars. This has been used for years to infer the internal rotation behavior of the Sun. The present work discusses the potential additional information that rotationally splitting asymmetries may provide when studying the internal rotation profile of stars. We present here some preliminary results of a method, currently under development, which intends: 1) to understand the variation of the rotational splitting asymmetries in terms of physical processes acting on the angular momentum distribution in the stellar interior, and 2) how this information can be used to better constrain the internal rotation profile of the stars. The accomplishment of these two objectives should allow us to better use asteroseismology as a test-bench of the different theories describing the angular momentum distribution and evolution in the stellar interiors. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim
Resumo:
Upper-mantle seismic anisotropy has been extensively used to infer both present and past deformation processes at lithospheric and asthenospheric depths. Analysis of shear-wave splitting (mainly from core-refracted SKS phases) provides information regarding upper-mantle anisotropy. We present average measurements of fast-polarization directions at 21 new sites in poorly sampled regions of intra-plate South America, such as northern and northeastern Brazil. Despite sparse data coverage for the South American stable platform, consistent orientations are observed over hundreds of kilometers. Over most of the continent, the fast-polarization direction tends to be close to the absolute plate motion direction given by the hotspot reference model HS3-NUVEL-1A. A previous global comparison of the SKS fast-polarization directions with flow models of the upper mantle showed relatively poor correlation on the continents, which was interpreted as evidence for a large contribution of ""frozen"" anisotropy in the lithosphere. For the South American plate, our data indicate that one of the reasons for the poor correlation may have been the relatively coarse model of lithospheric thicknesses. We suggest that improved models of upper-mantle flow that are based on more detailed lithospheric thicknesses in South America may help to explain most of the observed anisotropy patterns.
Resumo:
The age of some ancient pottery from the Valley of Vitor in the region of Arequipa, Peru, is determined by the thermoluminescence (TL) method. For dating, a 325 degrees C TL peak was used and irradiation with -dose from 5 to 50Gy was carried out for the additive method, and from 0.4 to 5Gy for the regeneration method. For these dose values, the TL intensity is observed to grow linearly, obtaining an accumulated dose of 1.62 +/- 0.09Gy and 1.36 +/- 0.03Gy for the additive and regeneration methods, respectively. The age (A) of the sample was calculated by the two methods, being A=867 +/- 195 years after Christ (AC) for the additive method and A=1050 +/- 157 years AC for the regeneration method. Both results are within 800-1200 years AC, which is the period of the Wari culture.
Resumo:
Surface roughness is an important geomorphological variable which has been used in the Earth and planetary sciences to infer material properties, current/past processes, and the time elapsed since formation. No single definition exists; however, within the context of geomorphometry, we use surface roughness as an expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter`s behavior at different spatial scales and data-set resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenization of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography highlighted local features and did not detect regional relief. Standard deviation of elevation correctly identified breaks of slope and was good at detecting regional relief. Standard deviation of slope (SD(slope)) also correctly identified smooth sloping areas and breaks of slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks of slope, although not as strongly as SD(slope), and it is sensitive to noise and spurious data. In general, SD(slope) offered good performance at a variety of scales, while the simplicity of calculation is perhaps its single greatest benefit.
Resumo:
In this paper we present an analysis of how matter waves, guided as propagating modes in potential structures, are split under adiabatic conditions. The description is formulated in terms of localized states obtained through a unitary transformation acting on the mode functions. The mathematical framework results in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split. The resulting states have the advantage of describing propagation in situations, for instance matter-wave interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential structures is investigated through numerical simulations. For superposition states the influence of longitudinal wave-packet extension on the localization is investigated and shown to be accurately described in quantitative terms using the adiabatic formulations presented here.