891 resultados para unified theories and models of strong and electroweak
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
Family change theory suggests three ideal-typical family models characterized by different combinations of emotional and material interdependencies in the family. Its major proposition is that in economically developing countries with a collectivistic background a family model of emotional interdependence emerges from a family model of complete interdependence. The current study aims to identify and compare patterns of family-related value orientations related to family change theory across three cultures and two generations. Overall, N = 919 dyads of mothers and their adolescent children from Germany, Turkey, and India participated in the study. Three clusters were identified representing the family models of independence, interdependence, and emotional interdependence, respectively. Especially the identification of an emotionally interdependent value pattern using a person-oriented approach is an important step in the empirical validation of family change theory. The preference for the three family models differed across as well as within cultures and generations according to theoretical predictions. Dyadic analyses pointed to substantial intergenerational similarities and also to differences in family models, reflecting both cultural continuity as well as change in family-related value orientations.
Resumo:
Starting from Kagitcibasi's (2007) conceptualization of family models, this study compared N = 2961 adolescents' values across eleven cultures and explored whether patterns of values were related to the three proposed family models through cluster analyses. Three clusters with value profiles corresponding to the family models of interdependence, emotional interdependence, and independence were identified on the cultural as well as on the individual level. Furthermore, individual-level clusters corresponded to culture-level clusters in terms of individual cluster membership. The results largely support Kagitcibasi's proposition of changing family models and demonstrate their representation as individual-level value profiles across cultures.
Resumo:
Cultural models of the domains healing and health are important in how people understand health and their behavior regarding it. The biomedicine model has been predominant in Western society. Recent popularity of holistic health and alternative healing modalities contrasts with the biomedical model and the assumptions upon which that model has been practiced. The holistic health movement characterizes an effort by health care providers and others such as nurses to expand the biomedical model and has often incorporated alternative modalities. This research described and compared the cultural models of healing of professional nurses and alternative healers. A group of nursing faculty who promote a holistic model were compared to a group of healers using healing touch. Ethnographic methods of participant observation, free listing and pile sort were used. Theoretical sampling in the free listings reached saturation at 18 in the group of nurses and 21 in the group of healers. Categories consistent for both groups emerged from the data. These were: physical, mental, attitude, relationships, spiritual, self management, and health seeking including biomedical and alternative resources. The healers had little differentiation between the concepts health and healing. The nurses, however, had more elements in self management for health and in health seeking for healing. This reflects the nurse's role in facilitating the shift in locus of responsibility between health and healing. The healers provided more specific information regarding alternative resources. The healer's conceptualization of health was embedded in a spiritual belief system and contrasted dramatically with that of biomedicine. The healer's models also contrasted with holistic health in the areas of holism, locus of responsibility, and dealing with uncertainty. The similarity between the groups and their dissimilarity to biomedicine suggest a larger cultural shift in beliefs regarding health care. ^
Resumo:
This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^
Resumo:
The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths.
Resumo:
Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost. To bridge these two approaches, we propose a framework for unified detection and tracking as a time-series Bayesian estimation problem. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a target in each frame. To do this we integrate the Active Testing (AT) paradigm with Bayesian filtering, and this results in a framework capable of both detecting and tracking robustly in situations where the target object enters and leaves the field of view regularly. We demonstrate our approach on a retinal tool tracking problem and show through extensive experiments that our method provides an efficient and robust tracking solution.
Resumo:
Several lines of genetic, archeological and paleontological evidence suggest that anatomically modern humans (Homo sapiens) colonized the world in the last 60,000 years by a series of migrations originating from Africa (e.g. Liu et al., 2006; Handley et al., 2007; Prugnolle, Manica, and Balloux, 2005; Ramachandran et al. 2005; Li et al. 2008; Deshpande et al. 2009; Mellars, 2006a, b; Lahr and Foley, 1998; Gravel et al., 2011; Rasmussen et al., 2011). With the progress of ancient DNA analysis, it has been shown that archaic humans hybridized with modern humans outside Africa. Recent direct analyses of fossil nuclear DNA have revealed that 1–4 percent of the genome of Eurasian has been likely introgressed by Neanderthal genes (Green et al., 2010; Reich et al., 2010; Vernot and Akey, 2014; Sankararaman et al., 2014; Prufer et al., 2014; Wall et al., 2013), with Papua New Guineans and Australians showing even larger levels of admixture with Denisovans (Reich et al., 2010; Skoglund and Jakobsson, 2011; Reich et al., 2011; Rasmussen et al., 2011). It thus appears that the past history of our species has been more complex than previously anticipated (Alves et al., 2012), and that modern humans hybridized several times with local hominins during their expansion out of Africa, but the exact mode, time and location of these hybridizations remain to be clarifi ed (Ibid.; Wall et al., 2013). In this context, we review here a general model of admixture during range expansion, which lead to some predictions about expected patterns of introgression that are relevant to modern human evolution.
Resumo:
Effects of conspecific neighbours on survival and growth of trees have been found to be related to species abundance. Both positive and negative relationships may explain observed abundance patterns. Surprisingly, it is rarely tested whether such relationships could be biased or even spurious due to transforming neighbourhood variables or influences of spatial aggregation, distance decay of neighbour effects and standardization of effect sizes. To investigate potential biases, communities of 20 identical species were simulated with log-series abundances but without species-specific interactions. No relationship of conspecific neighbour effects on survival or growth with species abundance was expected. Survival and growth of individuals was simulated in random and aggregated spatial patterns using no, linear, or squared distance decay of neighbour effects. Regression coefficients of statistical neighbourhood models were unbiased and unrelated to species abundance. However, variation in the number of conspecific neighbours was positively or negatively related to species abundance depending on transformations of neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes and standardized regression coefficients, often used in model fitting across large numbers of species, were also positively or negatively related to species abundance depending on transformation of neighbourhood variables, spatial pattern and distance decay. Tests using randomized tree positions and identities provide the best benchmarks by which to critically evaluate relationships of effect sizes or standardized regression coefficients with tree species abundance. This will better guard against potential misinterpretations.
Resumo:
The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.