931 resultados para two-dimensional turbulence
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
In this paper, we investigate the adhesive contact between a rigid cylinder of radius R and a graded elastic half-space with a Young's modulus varying with depth according to a power-law, E = E-0(y/c(0))(k) (0 < k < 1), while the Poisson's ratio v remains constant. The results show that, for a given value of ratio R/C-0, a critical value of k exists at which the pull-off force attains a maximum; for a fixed value of k, the larger the ratio R/c(0), the larger the pull-off force is. For Gibson materials (i.e., k = 1 and v = 0.5), closed-form analytical solutions can be obtained for the critical contact half-width at pull-off and pull-off force. We further discuss the perfect stick case with both externally normal and tangential loads.
Resumo:
In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are adopted under the condition that the contact radius (width) should be very small compared to the radius of the sphere or cylinder. However, a large contact radius (width) is often found in experiments even under a zero external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-profile cases are compared and analyzed. It is found that when the ratio of a/R is approximately larger than about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded profile function should be used.
Resumo:
A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]
Resumo:
On a hillslope, overland flow first generates sheet erosion and then, with increasing flux, it causes rill erosion. Sheet erosion (interrill erosion) and rill erosion are commonly observed to coexist on hillslopes. Great differences exist between both the intensities and incidences of rill and interrill erosion. In this paper, a two-dimensional rill and interrill erosion model is developed to simulate the details of the soil erosion process on hillslopes. The hillslope is treated as a combination of a two-dimensional interrill area and a one-dimensional rill. The rill process, the interrill process, and the joint occurrence of rill and interrill areas are modeled, respectively. Thus, the process of sheet flow replenishing rill flow with water and sediment can be simulated in detail, which may possibly render more truthful results for rill erosion. The model was verified with two sets of data and the results seem good. Using this model, the characteristics of soil erosion on hillslopes are investigated. Study results indicate that (1) the proposed model is capable of describing the complex process of interrill and rill erosion on hillslopes; (2) the spatial distribution of erosion is simulated on a simplified two-dimensional hillslope, which shows that the distribution of interrill erosion may contribute to rill development; and (3) the quantity of soil eroded increases rapidly with the slope gradient, then declines, and a critical slope gradient exists, which is about 15-20 degrees for the accumulated erosion amount.
Resumo:
We investigate the 2d O(3) model with the standard action by Monte Carlo simulation at couplings β up to 2.05. We measure the energy density, mass gap and susceptibility of the model, and gather high statistics on lattices of size L ≤ 1024 using the Floating Point Systems T-series vector hypercube and the Thinking Machines Corp.'s Connection Machine 2. Asymptotic scaling does not appear to set in for this action, even at β = 2.10, where the correlation length is 420. We observe a 20% difference between our estimate m/Λ^─_(Ms) = 3.52(6) at this β and the recent exact analytical result . We use the overrelaxation algorithm interleaved with Metropolis updates and show that decorrelation time scales with the correlation length and the number of overrelaxation steps per sweep. We determine its effective dynamical critical exponent to be z' = 1.079(10); thus critical slowing down is reduced significantly for this local algorithm that is vectorizable and parallelizable.
We also use the cluster Monte Carlo algorithms, which are non-local Monte Carlo update schemes which can greatly increase the efficiency of computer simulations of spin models. The major computational task in these algorithms is connected component labeling, to identify clusters of connected sites on a lattice. We have devised some new SIMD component labeling algorithms, and implemented them on the Connection Machine. We investigate their performance when applied to the cluster update of the two dimensional Ising spin model.
Finally we use a Monte Carlo Renormalization Group method to directly measure the couplings of block Hamiltonians at different blocking levels. For the usual averaging block transformation we confirm the renormalized trajectory (RT) observed by Okawa. For another improved probabilistic block transformation we find the RT, showing that it is much closer to the Standard Action. We then use this block transformation to obtain the discrete β-function of the model which we compare to the perturbative result. We do not see convergence, except when using a rescaled coupling β_E to effectively resum the series. For the latter case we see agreement for m/ Λ^─_(Ms) at , β = 2.14, 2.26, 2.38 and 2.50. To three loops m/Λ^─_(Ms) = 3.047(35) at β = 2.50, which is very close to the exact value m/ Λ^─_(Ms) = 2.943. Our last point at β = 2.62 disagrees with this estimate however.
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.