955 resultados para traffic psychology
Resumo:
The impact of weather on traffic and its behavior is not well studied in literature primarily due to lack of integrated traffic and weather data. Weather can significant effect the traffic and traffic management measures developed for fine weather might not be optimal for adverse weather. Simulation is an efficient tool for analyzing traffic management measures even before their actual implementation. Therefore, in order to develop and test traffic management measures for adverse weather condition we need to first analyze the effect of weather on fundamental traffic parameters and thereafter, calibrate the simulation model parameters in order to simulate the traffic under adverse weather conditions. In this paper we first, analyses the impact of weather on motorway traffic flow and drivers’ behaviour with traffic data from Swiss motorways and weather data from MeteoSuisse. Thereafter, we develop methodology to calibrate a microscopic simulation model with the aim to utilize the simulation model for simulating traffic under adverse weather conditions. Here, study is performed using AIMSUN, a microscopic traffic simulator.
Resumo:
Road traffic noise affects the quality of life in the areas adjoining the road. The effect of traffic noise on people is wide ranging and may include sleep disturbance and negative impact on work efficiency. To address the problem of traffic noise, it is necessary to estimate the noise level. For this, a number of noise estimation models have been developed which can estimate noise at the receptor points, based on simple configuration of buildings. However, for a real world situation we have multiple buildings forming built-up area. In such a situation, it is almost impossible to consider multiple diffractions and reflections in sound propagation from the source to the receptor point. An engineering solution to such a real world problem is needed to estimate noise levels in built-up area.
Resumo:
The growing social upheaval and intensifying tensions in South Africa have by their very nature evoked concern and panic among mental health professionals. In an attempt to alleviate the concomittant anxiety and appear to be more responsive to the majority, many psychologists have boarded the community psychology wagon to cross the great divide between the comfortable consultancy room and the masses. In assessing whether community psychology is the appropriate vehicle for crossing the rubicon, we will start with an overview of different models of community psychology focusing on their different conceptualizations of mental illness and how each model sees the role of the psychologist in the context of psycho-social change.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Traffic related emissions have been recognised as one of the main sources of air pollutants. In the research study discussed in this paper, variability of atmospheric total suspended particulate matter (TSP), polycyclic aromatic hydrocarbons (PAH) and heavy metal (HM) concentrations with traffic and land use characteristics during weekdays and weekends were investigated. Data required for the study were collected from a range of sampling sites to ensure a wide mix of traffic and land use characteristics. The analysis undertaken confirmed that zinc has the highest concentration in the atmospheric phase during weekends as well as weekdays. Although the use of leaded gasoline was discontinued a decade ago, lead was the second most commonly detected heavy metal. This is attributed to the association of previously generated lead with roadside soil and re-suspension to the atmosphere. Soil related particles are the primary source of TSP and manganese to the atmosphere. The analysis further revealed that traffic sources are dominant in gas phase PAHs compared to the other sources during weekdays. Land use related sources become important contributors to atmospheric PAHs during weekends when traffic sources are at their minimal levels.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
Prevention and safety promotion programmes. Traditionally, in-depth investigations of crash risks are conducted using exposure controlled study or case-control methodology. However, these studies need either observational data for control cases or exogenous exposure data like vehicle-kilometres travel, entry flow or product of conflicting flow for a particular traffic location, or a traffic site. These data are not readily available and often require extensive data collection effort on a system-wide basis. Aim: The objective of this research is to propose an alternative methodology to investigate crash risks of a road user group in different circumstances using readily available traffic police crash data. Methods: This study employs a combination of a log-linear model and the quasi-induced exposure technique to estimate crash risks of a road user group. While the log-linear model reveals the significant interactions and thus the prevalence of crashes of a road user group under various sets of traffic, environmental and roadway factors, the quasi-induced exposure technique estimates relative exposure of that road user in the same set of explanatory variables. Therefore, the combination of these two techniques provides relative measures of crash risks under various influences of roadway, environmental and traffic conditions. The proposed methodology has been illustrated using Brisbane motorcycle crash data of five years. Results: Interpretations of results on different combination of interactive factors show that the poor conspicuity of motorcycles is a predominant cause of motorcycle crashes. Inability of other drivers to correctly judge the speed and distance of an oncoming motorcyclist is also evident in right-of-way violation motorcycle crashes at intersections. Discussion and Conclusions: The combination of a log-linear model and the induced exposure technique is a promising methodology and can be applied to better estimate crash risks of other road users. This study also highlights the importance of considering interaction effects to better understand hazardous situations. A further study on the comparison between the proposed methodology and case-control method would be useful.
Resumo:
Background Pakistan has the highest population rate of road fatalities in South Asia (25.3 fatalities per 100,000 people: Global Status Report on Road Safety, WHO 2009). Along with road environment and vehicle factors, human factors make a substantial contribution to traffic safety in Pakistan. Beliefs about road crash causation and prevention have been demonstrated to contribute to risky road use behaviour and resistance to preventive measures in a handful of other developing countries, but has not been explored in Pakistan. In particular, fatalism (whether based on religion, other cultural beliefs or experience) has been highlighted as a barrier to achieving changes in attitudes and behaviour. Aims The research reported here aimed (i) to explore perceptions of road crash causation among policy makers, police officers, professional drivers and car drivers in Pakistan; (ii) to identify how cultural and religious beliefs influence road use behaviour in Pakistan; and (iii) to understand how fatalistic beliefs may work as obstacles to road safety interventions. Methods In-depth interviews were conducted by the primary author (mostly in Urdu) in Lahore, Rawalpindi and Islamabad with 12 professional drivers (taxi, bus and truck), 4 car drivers, 6 police officers, 4 policy makers and 2 religious orators. All but two were Muslim, two were female, and they were drawn from a wide range of ages (24 to 60) and educational backgrounds. The interviews were taped and transcribed, then translated into English and analysed for themes related to the aims. Results Fatalism emerged as a pervasive belief utilised to justify risky road use behaviour and to resist messages about preventive measures. There was a strong religious underpinning to the statement of fatalistic beliefs (this reflects popular conceptions of Islam rather than scholarly interpretations), but also an overlap with superstitious beliefs which have longer-standing roots in Pakistani culture. These beliefs were not limited to people of poor educational background or position. A particular issue which was explored in more detail was the way in which these beliefs and their interpretation within Pakistani society contributed to poor police reporting of crashes. Discussion and conclusions The pervasive nature of fatalistic beliefs in Pakistan affects road user behaviour by supporting continued risk taking behaviour on the road, and by interfering with public health messages about behaviours which would reduce the risk of traffic crashes. The widespread influence of these beliefs on the ways that people respond to traffic crashes and the death of family members contribute to low crash reporting rates and to a system which is difficult to change. The promotion of an evidence-based approach to road user behaviour is recommended, along with improved professional education for police and policy makers.
Resumo:
- The role of illegal behaviours in road crashes - Three case studies in managing illegal road user behaviour: an Australian perspective - Current and emerging challenges, including the need to: -reduce punishment avoidance -identify and manage recidivist offenders -address community attitudes and perceptions - Countermeasure implications
Resumo:
The National Road Safety Strategy 2011-2020 outlines plans to reduce the burden of road trauma via improvements and interventions relating to safe roads, safe speeds, safe vehicles, and safe people. It also highlights that a key aspect in achieving these goals is the availability of comprehensive data on the issue. The use of data is essential so that more in-depth epidemiologic studies of risk can be conducted as well as to allow effective evaluation of road safety interventions and programs. Before utilising data to evaluate the efficacy of prevention programs it is important for a systematic evaluation of the quality of underlying data sources to be undertaken to ensure any trends which are identified reflect true estimates rather than spurious data effects. However, there has been little scientific work specifically focused on establishing core data quality characteristics pertinent to the road safety field and limited work undertaken to develop methods for evaluating data sources according to these core characteristics. There are a variety of data sources in which traffic-related incidents and resulting injuries are recorded, which are collected for a variety of defined purposes. These include police reports, transport safety databases, emergency department data, hospital morbidity data and mortality data to name a few. However, as these data are collected for specific purposes, each of these data sources suffers from some limitations when seeking to gain a complete picture of the problem. Limitations of current data sources include: delays in data being available, lack of accurate and/or specific location information, and an underreporting of crashes involving particular road user groups such as cyclists. This paper proposes core data quality characteristics that could be used to systematically assess road crash data sources to provide a standardised approach for evaluating data quality in the road safety field. The potential for data linkage to qualitatively and quantitatively improve the quality and comprehensiveness of road crash data is also discussed.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational safety analysis relying on collision statistics is often hampered because of low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possesses great potential for managing collision risks in port waters.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.