444 resultados para titania photocatalysts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic inactivation of Escherischia coli and Pichia Pastoris was studied with combustion synthesized titanium dioxide photocatalysts Three different combustion synthesized (CS) catalysts were used viz CS-TiO2 1% Ag substituted in TiO2 and 1% Ag impregnated in TiO2 All the combustion synthesized catalysts showed higher activity as compared to the activity observed with commercial Degussa P-25 TiO2 The effect of various parameters like catalyst loading different catalysts and initial cell concentration was studied At the optimum loading 1% Ag impregnated TiO2 showed the maximum efficiency and complete inactivation of both the microorganisms was observed within an hour of irradiation The morphology of inactivated cells was studied by inverted microscope and SEM From the images obtained it was hypothesized that damage to the cell wall was the main cause of cell inactivation The initial cell concentration had a prominent effect on the inactivation At a low initial cell concentration the complete inactivation of E cob and P pastoris was observed within 10 and 20 min respectively This shows that P pastoris has a stronger resistance towards photocatalytic inactivation than E cols The inactivation reactions were modeled with power law kinetics The order of reaction in case of E colt and P pastoris were determined as 1 20 and 1 08 respectively (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine powders of semiconductor oxides have been widely used as photocatalysts for many reactions. Among the various photocatalytic reactions, water splitting has been given much importance, since it is a promising chemical route for solar energy conversion. Perovskite oxides, in particular SrTiO, have been commonly used as photocatalysts because some of them can decompose H,O into H, and 0, without an external bias potential (1). In turn, this is because the conduction band (CB) edges of some of the perovskite oxides are more negative than the H+/H, energy level. Since the catalytic activity is related to the surface properties of the solids, fine powders rather than single crystals are used. Photocatalysis on fine powers can be conveniently discussed in three parts, viz. preparation, characterization and their catalytic activity. Presently, photo-decomposition of water using SrTiO, fine powders is discussed in greater detail, although other photocatalytic reactions on various perovskite oxides are also briefly dealt with.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles of titania were obtained by the controlled hydrolysis of Ti(i-OC3H7)(4) in the reverse micelles of dodecylamine derived from dodecylamine-isopropanol-water solution (water/oil microemulsion). The mesolamellar phase based on titanium nitride (TiN) was obtained by first decomposing TiN atleast partially using the 1:1 solution of acid mixture (HF and HNO3 in the ratio of 9:1) in water and then templating onto the cationic surfactant namely, cetyltrimethylammaniumbromide (abbreviated as CTAB) at 80 degrees C. The synthesis of mesolamellar phase based on TiN involves the charge matched templating approach following the counter-ion mediated pathway. The samples thus obtained were characterized by small angle x-ray diffraction using Cuk(a) radiation, scanning electron microscopy and transmission electron microscopy, which indicated some satisfactory results. (C) 1999 Acta Metallurgica Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of Ceria, Titania and Ziroonia have been prepared using Ion Assisted Deposition(IAD). The energy of ions was varied between 0 and 1 keV and current densities up to 220 μA/cm were used. It was found that the stress behaviour is dependent on ion species, i.e. Argon or Oxygen, ion energy and current density and substrate temperature apart from the material. While oeria files showed tensile stresses under the influence of argon ion bombardment at ambient temperature, they showed a sharp transition from tensile to compressive stress with increase in substrate temperature. When bombarded with oxygen ions they showed a transition from tensile to compressive stress with increase in energy. The titania films deposited with oxygen ions, on the other hand showed purely tensile stresses. Zirconia films deposited with oxygen ions, however, showed a transition from tensile to compressive stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, KBiO(3) is synthesized by a standard oxidation technique while LiBiO(3) is prepared by hydrothermal method. The synthesized catalysts are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), BET surface area analysis and Diffuse Reflectance Spectroscopy (DRS). The XRD patterns suggest that KBiO(3) crystallizes in the cubic structure while LiBiO(3) crystallizes in orthorhombic structure and both of these adopt the tunnel structure. The SEM images reveal micron size polyhedral shaped KBiO(3) particles and rod-like or prismatic shape particles for LiBiO(3). The band gap is calculated from the diffuse reflectance spectrum and is found to be 2.1 eV and 1.8 eV for KBiO(3) and LiBiO(3), respectively. The band gap and the crystal structure data suggest that these materials can be used as photocatalysts. The photocatalytic activity of KBiO(3) and LiBiO(3) are evaluated for the degradation of anionic and cationic dyes, respectively, under UV and solar radiations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs energy of formation of titania-saturated lead titanate has been determined by e.m.f. measurements on the solid state cell;Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt in the temperature range 1075–1350 K. The results obtained are significantly different from those reported in the literature based upon vapour pressure measurements, employing Knudsen effusion and transportation techniques, and assuming that the vapor phase consisted entirely of monomeric PbO molecules. A reanalysis of the data obtained in the earlier vapor pressure studies using mass spectrometric measurements on polymeric PbO species in the gas phase, gives Gibbs energies of formation of lead titanate which are in better agreement with those obtained in this study. Earlier electrochemical measurements by Mehrotra et al. and more recent electrochemical measurements by Schmahl et al. both employing CaO-ZrO2 solid electrolytes are in good agreement with the present study. The electro-chemical measurements by Schmahl et al. using PbF 2 solid electrolyte give a slightly more positive Gibbs energy of formation. There was no evidence supporting the formation of compounds other than Pb1−xTiO3−x from yellow PbO and rutile form of TiO2 in the temperature range covered in this study.Résumé L'enthalpie libre de formation du titanate de plomb saturé en oxyde de titane a été déterminée par des mesures de FEM de la pile: Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt dans le domaine de températures 1075–1350 K. Les résultats obtenus, different appréciablement de ceux publiés, déterminés par mesures de tensions de vapeur (techniques de transport et d'effusion de Knudsen) en supposant que la phase gazeuse etait uniquement constituée de molécules monomériques de PbO. Une réanalyse des résultats de la littérature, à partir de mesures par spectrométrie de masse sur les polymères de PbO gazeux, donne des enthalpies libres de formation du titanate de plomb se rapprochant de celles obtenues dans cette étude. Les mesures de Mehrotra et al. et plus récemment de Schmahl et al. utilisant toutes deux l'électrolyte CaO-ZrO2 concordent bien avec celles de la présente étude. Les mesures de Schmahl et al., à l'aide de l' électrolyte solide PbF2, donnent une enthalpie de formation légèrement plus positive. Pour la gammede températures étudiée, rien ne permet de supposer que des composés autres que Pb1−x TiO3−x puissent se former à partir du PbO Gaune) et du rutile (TiO2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photocatalysis refers to the oxidation and reduction reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Photocatalysis is widely being practiced for the degradation and mineralization of hazardous organic compounds to CO2 and H2O, reduction of toxic metal ions to their non-toxic states, deactivation and destruction of water borne microorganisms, decomposition of air pollutants like volatile organic compounds, NOx, CO and NH3, degradation of waste plastics and green synthesis of industrially important chemicals. This review attempts to showcase the well established mechanism of photocatalysis, the use of photocatalysts for water and air pollution control,visible light responsive modified-TiO2 and non-TiO2 based materials for environmental and energy applications, and the importance of developing reaction kinetics for a comprehensive understanding and design of the processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic inactivation of Escherichia coil was studied with combustion synthesized TiO2 photocatalysts in the presence of visible light. A series of 400W lamps irradiating in the visible region of the solar spectrum was used. The effect of various parameters, such as catalyst loading, light intensity, presence of inorganic ions, addition of hydrogen peroxide and pH, on the photocatalytic inactivation of E. coil was investigated. Photolysis alone had a small effect on inactivation while the dark experiment resulted in no inactivation and Ag/TiO2 showed the maximum inactivation. At a catalyst loading of 0.25 g/L, all the combustion synthesized catalysts showed better inactivation of E. coil compared to commercial Degussa P-25 (DP-25) TiO2 catalyst. An improved inactivation was observed with increasing lamp intensity and addition of H2O2. A negative effect on inactivation was observed by addition of inorganic ions such as HCO3-, SO42-, Cl-, NO3-, Na+, K+ and Ca2+. The photocatalytic inactivation of E. coli remained unaltered at different pH of the solution. The inactivation of E. coli was modeled with power law kinetics and was observed to follow first order kinetics. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ADVANCED MULTIFUNCTIONAL INORGANIC NANOSTRUCTURED OXIDES FOR CONTROLLED RELEASE AND SENSING. We demonstrate here certain examples of multifunctional nanostructured oxidematerials for biotechnological and environmental applications.Various in-house synthesized homogeneous nanostructured viz.mesoporous and nanotubes silica and titania have been employed for controlled drug delivery and electrochemical biosensing applications. Confinement of macromolecules such as proteins studied via electrochemical, thermal and spectroscopic methods showed no detrimental effect on native protein structure and function, thus suggesting effective utility of oxide nanostructures as bio-encapsulators. Multi-functionalitywas demonstrated via employing similar nanostructures for sensing organic water pollutants e.g. textile dyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 mu A mg(-1) ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).