933 resultados para system recovery
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Coral diseases are a major factor in the decline of coral reefs worldwide, and a large proportion of studies focusing on disease causation use aquaria to control variables that affect disease occurrence and development. Public aquaria can therefore provide an invaluable resource to study the factors contributing to health and disease. In November 2010 the corals within the main display tank at the Horniman Museum and Gardens, London, UK, underwent a severe stress event due to reduced water quality, which resulted in death of a large number of coral colonies. Three separate colonies of two species of reef coral, Seritopora hystrix and Montipora capricornis showing signs of stress and acute tissue loss were removed from the display tank and placed in a research tank with improved water quality. Both coral species showed a significant difference in 16S rRNA gene bacterial diversity between healthy and stressed states (S. hystrix; ANOSIM, R=0.44, p=0.02 and M. capricornis; ANOSIM, R=0.33, p=0.01), and between the stressed state and the recovering corals. After four months the bacterial communities had returned to a similar state to that seen in healthy corals of the same species. The bacterial communities associated with the two coral species were distinct, despite them
being reared under identical environmental conditions. Despite the environmental perturbation being identical different visual signs were seen in each species and distinctly different bacterial communities associated with the stressed state occurred within them. Recovery of the visually healthy state was associated with a return of the bacterial community, within two months, to the pre-disturbance state. These observations suggest that coral-associated microbial communities are remarkably resilient and return to a very similar stable state following disturbance.
Resumo:
Skeletal muscle wasting and weakness are major complications of critical illness and underlie the profound physical and functional impairments experienced by survivors after discharge from the intensive care unit (ICU). Exercise-based rehabilitation has been shown to be beneficial when delivered during ICU admission. This review aimed to determine the effectiveness of exercise rehabilitation initiated after ICU discharge on primary outcomes of functional exercise capacity and health-related quality of life. We sought randomized controlled trials, quasi-randomized controlled trials, and controlled clinical trials comparing an exercise intervention commenced after ICU discharge vs. any other intervention or a control or ‘usual care’ programme in adult survivors of critical illness. Cochrane Central Register of Controlled Trials, Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica Database, and Cumulative Index to Nursing and Allied Health Literature databases were searched up to February 2015. Dual, independent screening of results, data extraction, and quality appraisal were performed. We included six trials involving 483 patients. Overall quality of evidence for both outcomes was very low. All studies evaluated functional exercise capacity, with three reporting positive effects in favour of the intervention. Only two studies evaluated health-related quality of life and neither reported differences between intervention and control groups. Meta-analyses of data were precluded due to variation in study design, types of interventions, and selection and reporting of outcome measurements. We were unable to determine an overall effect on functional exercise capacity or health-related quality of life of interventions initiated after ICU discharge for survivors of critical illness. Findings from ongoing studies are awaited. Future studies need to address methodological aspects of study design and conduct to enhance rigour, quality, and synthesis.
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
In the past decades, social-ecological systems (SESs) worldwide have undergone dramatic transformations with often detrimental consequences for livelihoods. Although resilience thinking offers promising conceptual frameworks to understand SES transformations, empirical resilience assessments of real-world SESs are still rare because SES complexity requires integrating knowledge, theories, and approaches from different disciplines. Taking up this challenge, we empirically assess the resilience of a South African pastoral SES to drought using various methods from natural and social sciences. In the ecological subsystem, we analyze rangelands’ ability to buffer drought effects on forage provision, using soil and vegetation indicators. In the social subsystem, we assess households’ and communities’ capacities to mitigate drought effects, applying agronomic and institutional indicators and benchmarking against practices and institutions in traditional pastoral SESs. Our results indicate that a decoupling of livelihoods from livestock-generated income was initiated by government interventions in the 1930s. In the post-apartheid phase, minimum-input strategies of herd management were adopted, leading to a recovery of rangeland vegetation due to unintentionally reduced stocking densities. Because current livelihood security is mainly based on external monetary resources (pensions, child grants, and disability grants), household resilience to drought is higher than in historical phases. Our study is one of the first to use a truly multidisciplinary resilience assessment. Conflicting results from partial assessments underline that measuring narrow indicator sets may impede a deeper understanding of SES transformations. The results also imply that the resilience of contemporary, open SESs cannot be explained by an inward-looking approach because essential connections and drivers at other scales have become relevant in the globalized world. Our study thus has helped to identify pitfalls in empirical resilience assessment and to improve the conceptualization of SES dynamics.
Resumo:
Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework.
Resumo:
Résumé : Les eaux souterraines ont un impact majeur sur la vie terrestre, les besoins domestiques et le climat. Elles sont aussi un maillon essentiel du cycle hydrologique. Au Canada par exemple, plus de 30 % de la population est tributaire des eaux souterraines pour leur alimentation en eau potable. Ces ressources subissent de nombreuses pressions sous l’influence de certains facteurs comme la salinisation, la contamination et l’épuisement. La variabilité du climat et la demande croissante sur ces ressources imposent l'amélioration de nos connaissances sur les eaux souterraines. L’objectif principal du projet de recherche est d’exploiter les données d’anomalies (TWS) de la mission Gravity Recovery And Climate Experiment (GRACE) pour localiser, quantifier et analyser les variations des eaux souterraines à travers les bassins versants du Bas-Mackenzie, du Saint-Laurent, du Nord-Québec et du Labrador. Il s’agit aussi d’analyser l’influence des cycles d’accumulation et de fonte de neige sur les variations du niveau des eaux souterraines. Pour estimer les variations des eaux souterraines, la connaissance des autres paramètres du bilan hydrologique est nécessaire. Ces paramètres sont estimés à l’aide des sorties du modèles de surface CLM du Système Global d’Assimilation des Données de la Terre (GLDAS). Les données GRACE qui ont été utilisées sont celles acquises durant la période allant de mars 2002 à août 2012. Les résultats ont été évalués à partir d’enregistrements de niveaux piézométriques provenant de 1841 puits localisés dans les aquifères libres du bassin des réseaux de suivi des eaux souterraines au Canada. Les valeurs de rendements spécifiques des différents types d’aquifères de chaque puits et celles des variations mensuelles du niveau d’eau dans ces puits ont été utilisées pour estimer les variations des anomalies des eaux souterraines in-situ. L’étude de corrélation entre les variations des anomalies des eaux souterraines estimées à partir de la combinaison GRACE-GLDAS et celles issues de données in-situ révèle des concordances significatives avec des valeurs de
Resumo:
Since turning professional in 1995 there have been considerable advances in the research on the demands of rugby union, largely using Global Positioning System (GPS) analysis over the last 10 years. A systematic review on the use of GPS, particularly the setting of absolute (ABS) and individual (IND) velocity bands in field based, intermittent, high-intensity (HI) team sports was undertaken. From 3669 records identified, 38 studies were included for qualitative analysis. Little agreement on the definition of movement intensities within team sports was found, only three papers, all on rugby union, had used IND bands, with only one comparing ABS and IND methods. Thus, the aim of this study was to determine if there is a difference in the demands within positions when comparing ABS and IND methods for GPS analysis and if these differences are significantly different between the forward and back positional groups. A total of 214 data files were recorded from 26 players in 17 matches of the 2015/2016 Scottish BT Premiership. ABS velocity zones 1-7 were set at 1) 0-6, 2) 6.1-11, 3) 11.1-15, 4) 15.1-18, 5) 18.1-21, 6) 21.1-15 and 7) 25.1-40km.h-1 while IND zones 1-7 were 1) <20, 2) 20-40, 3) 40-50, 4) 50-70, 5) 70-80, 6) 80-95 and 7) 95-100% of player’s individually determined maximum velocity (Vmax). A 40m sprint test measured Vmax using OptaPro S4 10 Hz (catapult, Australia) GPS units to derive IND bands. The same GPS units were worn during matches. GPS outputs analysed were % distance, % time, high intensity efforts (HIEs) over 18.1 km.h-1 / 70% max velocity and repeated high intensity efforts (RHIEs) which consists of three HIEs in 21secs. General linear model (GLM) analysis identified a significant difference in the measurement of % total distance covered, between the ABS and IND methods in all zones for forwards (p<0.05) and backs (p<0.05). This difference was also significant between forwards and backs in zones 1, shown as mean difference ± standard deviation (3.7±0.7%), 6 (1.2±0.4%) and 7 (1.0±0.0%) respectively (p<0.05). Percentage time estimations were significantly different between ABS and IND analysis within forwards in zones 1 (1.7±1.7%), 2 (-2.9±1.3%), 3 (1.9±0.8%), 4 (-1.4±0.8%) and 5 (0.2±0.4%), and within backs in zones 1 (-10±1.5%), 2 (-1.2±1.1%), 3 (1.8±0.9%) and 5 (0.6±0.5%) (p<0.05). The difference between groups was significant in zones 1, 2, 4 and 5 (p<0.05). The number of HIEs was significantly different between forwards and backs in zones 6 (6±2) and 7 (3±2). RHIEs were significantly different between ABS and IND for forwards (1±2, p<0.05) although not between groups. Until more research on the differences in ABS and IND methods is carried out, then neither can be deemed a criterion method. In conclusion, there are significant differences between the ABS and IND methods of GPS analysis of the physical demands of rugby union, which must be considered when used to inform training load and recovery to improve performance and reduce injuries.
Resumo:
A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.
Resumo:
The selection of the optimal operating conditions for an industrial acrylonitrile recovery unit was conducted by the systematic application of the response surface methodology, based on the minimum energy consumption and products specifications as process constraints. Unit models and plant simulation were validated against operating data and information. A sensitivity analysis was carried out in order to identify the set of parameters that strongly affect the trajectories of the system while keeping products specifications. The results suggest that energy savings of up to 10% are possible by systematically adjusting operating conditions.
Effect of restorative system and thermal cycling on the tooth-restoration interface - OCT evaluation
Resumo:
Tese de Doutoramento, Ciências do Mar da Terra e do Ambiente, Ramo: Ciências e Tecnologias do Ambiente, Especialidade em Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
The United States transportation industry is predicted to consume approximately 13 million barrels of liquid fuel per day by 2025. If one percent of the fuel energy were salvaged through waste heat recovery, there would be a reduction of 130 thousand barrels of liquid fuel per day. This dissertation focuses on automotive waste heat recovery techniques with an emphasis on two novel techniques. The first technique investigated was a combination coolant and exhaust-based Rankine cycle system, which utilized a patented piston-in-piston engine technology. The research scope included a simulation of the maximum mass flow rate of steam (700 K and 5.5 MPa) from two heat exchangers, the potential power generation from the secondary piston steam chambers, and the resulting steam quality within the steam chamber. The secondary piston chamber provided supplemental steam power strokes during the engine's compression and exhaust strokes to reduce the pumping work of the engine. A Class-8 diesel engine, operating at 1,500 RPM at full load, had a maximum increase in the brake fuel conversion efficiency of 3.1%. The second technique investigated the implementation of thermoelectric generators on the outer cylinder walls of a liquid-cooled internal combustion engine. The research scope focused on the energy generation, fuel energy distribution, and cylinder wall temperatures. The analysis was conducted over a range of engine speeds and loads in a two cylinder, 19.4 kW, liquid-cooled, spark-ignition engine. The cylinder wall temperatures increased by 17% to 44% which correlated well to the 4.3% to 9.5% decrease in coolant heat transfer. Only 23.3% to 28.2% of the heat transfer to the coolant was transferred through the TEG and TEG surrogate material. The gross indicated work decreased by 0.4% to 1.0%. The exhaust gas energy decreased by 0.8% to 5.9%. Due to coolant contamination, the TEG output was not able to be obtained. TEG output was predicted from cylinder wall temperatures and manufacturer documentation, which was less than 0.1% of the cumulative heat release. Higher TEG conversion efficiencies, combined with greater control of heat transfer paths, would be needed to improve energy output and make this a viable waste heat recovery technique.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.