901 resultados para synthetic high polymers
Resumo:
Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H2O)(1.5)](2)Mo6O19.CH3CN, 1, and [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)]XMo12O40.6DMF.CH3CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) Angstrom, c = 14.2676(4) Angstrom, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15,7435(17) Angstrom, c = 30.042(7) Angstrom, gamma = 120degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) Angstrom, c = 29.9778(18) Angstrom, gamma = 120degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo6O19](2-) polyoxoanions and the CH2 groups of crown ether molecules, Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo12O40](3-) (X = As and P) polyoxoanion "guests" resided.
Resumo:
In this article we present a mechanical pattern transfer process where a thermosetting polymer mold instead of a metal, dielectric, ceramic, or semiconductor master made by conventional lithography was used as the master to pattern thermoplastic polymers in hot embossing lithography. The thermosetting polymer mold was fabricated by a soft lithography strategy, microtransfer molding. For comparison, the thermosetting polymer mold and the silicon wafer master were both used to imprint the thermoplastic polymer, polymethylmethacrylate. Replication of the thermosetting polymer mold and the silicon wafer master was of the same quality. This indicates that the thermosetting polymer mold could be used for thermoplastic polymer patterning in hot embossing lithography with high fidelity.
Resumo:
Blends of linear low-density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high-impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel-Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel-Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE-g-PS and LLDPE-g-HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m(2). Scanning electron microscopy micrographs showed that the size of the domains decreased from 4-5 to less than 1 mum, depending on the content of added AlCl3.
Resumo:
Liquid crystalline properties of a mesomorphic polyacetylene {-[HC=C(CH2 )(9)OOC-Biph-OC7H15](n)- (PA9EO7), Biph=4-4'-biphenylyl} are investigated by X-ray diffraction, polarizing optical microscope, and transmission electron microscope. Polyacetylene PA9EO7 from solution adopts a sandwich structure, which is a high order smectic phase. The biphenylyl pendants pack in a hexagonal fashion and the distance between two appendages is 4.51 Angstrom. The heptyloxy tails on one polymer backbone overlap with those on the neighboring chain. The nonyl spacer and the heptyloxy tail exhibit a hexagonal packing arrangement with intermolecular distance of 3.24 Angstrom.
Resumo:
A versatile process employing anionic surfactants has been developed for the preparation of processible nanocomposite films with electrical conductivity and magnetic susceptibility. Maghemite (g-Fe2O3) nanoclusters (similar to 10 nm in size) are coated with 4-dodecyl- benzenesulfonic acid, and polyaniline (PAn) chains are doped with 10-camphorsulfonic acid. The coated nanoclusters and doped polymers are soluble in common solvents, and casting the solutions readily gives free-standing nanocomposite films with nanocluster contents as high as similar to 50 wt %. The g-Fe2O3/PAn nanocomposites show high conductivity (82-337 S cm(-1)) and magnetizability (up to similar to 35 emu/g g-Fe2O3).
Resumo:
A novel conducting polymer poly(phenylene sulfide-tetraaniline) (PPSTEA), with tetraaniline (TA) and phenylene sulfide (PS) segments in its repeat unit, has been synthesized through an acid-induced polycondensation reaction of 4-methylsulfinylphenyl-capped tetraaniline. The new polymer, which represents the first soluble conducting polyaniline analogue with well-defined structure, has high molecular weight, good solubility in common solvents, and good film-forming properties. Its electrical property is analogous to polyaniline. The conductivity of preliminarily, protonic-doping PPSTEA is up to 10 degrees S/cm. This synthetic strategy appears to be general for developing novel well-defined polyaniline analogue containing much longer fixed conjugation length.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.
Resumo:
A series of novel nitrogen- and sulfur-containing conjugated polymers have been synthesized via an acid-induced self polycondensation of functional monomers with methyl sulfinyl group. They exhibit good solubility in common solvents, such as CHCl3, THF, DMF, DMSO, et al; and thus show excellent film-forming properties. They are used as hole-transport layer (HTL) in two-layer light-emitting diodes (ITO/polymer/Alq3/Mg:Ag). The typical turn-on voltage of these diodes is about 4 similar to 5V. The maximum brightness is about 3440cd/m(2) at 20 V. The maximum efficiency is estimated to be 0.15 Im/W at 10V.
Resumo:
Radiation crosslinking of polymers mainly depends on the structure of polymer chain. The flexibility and mobility of chain directly influence the possibility of the reactive radicals recombination. Flexible chain is easier to crosslink than rigid-chain polymer. The latter must be crosslinked at high temperature, as most polymers can only crosslink above their melting point. Structural effect also influences the mechanism of radiation crosslinking of polymers. We find from the results in literature and in our laboratory that, the flexibility chain polymer mainly crosslinked with H type, but the rigid chain polymer mainly crosslinked with Y type. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].
Resumo:
Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.
Resumo:
Intermolecular ferromagnetic interactions in two stacking models for the dimer of high spin molecules are investigated by means of AM1-CI approach. It is shown that the stability of high spin ground state versus low spin state can be simply traced back to the number and the extent of atoms with reversed signs of pi-spin density in neighboring molecules coupled to each other in shortest distance.
Resumo:
A soluble polymer emitting green color with high efficiency was synthesized. Bright green electroluminescence devices, both single layer and multilayer, were fabricated. The luminous efficiency was improved dramatically. Carrier injection from the electrodes to the emissive layer and concomitant green electroluminescence from the emissive layer were observed. A luminance of 920 cd/m(2) and luminous efficiency of 5.35 1m/W were achieved at a drive voltage of 15 V for the multilayer device. (C) 1997 Elsevier Science S.A.
Resumo:
The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.