696 resultados para steel casting
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
Strenx® 960 MC is a direct quenched type of Ultra High Strength Steel (UHSS) with low carbon content. Although this material combines high strength and good ductility, it is highly sensitive towards fabrication processes. The presence of stress concentration due to structural discontinuity or notch will highlight the role of these fabrication effects on the deformation capacity of the material. Due to this, a series of tensile tests are done on both pure base material (BM) and when it has been subjected to Heat Input (HI) and Cold Forming (CF). The surface of the material was dressed by laser beam with a certain speed to study the effect of HI while the CF is done by bending the specimen to a certain angle prior to tensile test. The generated results illustrate the impact of these processes on the deformation capacity of the material, specially, when the material has HI experience due to welding or similar processes. In order to compare the results with those of numerical simulation, LS-DYNA explicit commercial package has been utilized. The generated results show an acceptable agreement between experimental and numerical simulation outcomes.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.
Resumo:
Finnish design and consulting companies are delivering robust and cost-efficient steel structures solutions to a large number of manufacturing companies worldwide. Recently introduced EN 1090-2 standard obliges these companies to specify the execution class of steel structures for their customers. This however, requires clarifying, understanding and interpreting the sophisticated procedure of execution class assignment. The objective of this research is to provide a clear explanation and guidance through the process of execution class assignment for a given steel structure and to support the implementation of EN 1090-2 standard in Rejlers Oy, one of Finnish design and consulting companies. This objective is accomplished by creating a guideline for designers that elaborates on the four-step process of the execution class assignment for a steel structure or its part. Steps one to three define the consequence class (projected consequences of structure failure), the service category (hazards associated with the service use exploitation of steel structure) and the production category (manufacturing process peculiarities), based on the ductility class (capacity of structure to withstand deformations) and the behaviour factor (corresponds to structure seismic behaviour). The final step is the execution class assignment taking into account results of previous steps. Main research method is indepth literature review of European standards family for steel structures. Other research approach is a series of interviews of Rejlers Oy representatives and its clients, results of which have been used to evaluate the level of EN 1090-2 awareness. Rejlers Oy will use the developed novel coherent standard implementation guideline to improve its services and to obtain greater customer satisfaction.
Resumo:
Teräsvalimon toimitusprosessissa toimitusvarmuus on tärkeä tuotannon tunnusluku. Valimotuotannossa olevien lukuisten muuttujien vuoksi tuotannonsuunnittelu ja läpivirtauksen hallinta on haasteellista. Tuotteiden, valumateriaalien ja näiden yhdistelmien suuri yhtäaikainen määrä tuotannossa vaikeuttaa tuotannon ennustettavuutta sekä vaikuttaa läpivirtaukseen ja toimitusvarmuuteen. Lisäksi tuotannon eri työvaiheissa ilmenevät kapeikot rajoittavat läpivirtausta ja kasvattavat läpimenoaikoja. Kapeikkoja voidaan hyödyntää tuotannonohjauksessa jos kapeikot ovat selkeästi havaittavissa. Kapasiteetin siirtäminen ei-kapeikosta kapeikkoon lisää tuotannon läpivirtausta. Pelkkä kapeikkojen hallinta ei paranna toimitusvarmuutta jos keskeneräisen tuotannon määrä on suuri ja järjestys väärä. Tuotannon työkuormien visuaalisuuden parantaminen kaikilla työvaiheilla antaa mahdollisuuksia ohjata tuotantoa tehokkaammin. Kandidaatintyössä on tarkasteltu teräsvalimon valmistusprosessia ja selvitetty tuotannon eri vaiheissa ilmeneviä kapeikkoja. Selvitystyössä hyödynnettiin TOC-analyysiä. Keskeneräisen tuotannon määrää mitattiin useilla otannoilla eri työvaiheiden kohdalla. Tuloksia analysoimalla löydettiin tuotannon ongelmakohdat ja niihin tarvittavat kehitystoimenpiteet.
Resumo:
In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.
Resumo:
Diplomityössä tutkitaan hitsatun duplex-teräksen, laatu: EN 1.4462 (Outokumpu laatu 2205) väsymislujuutta. Tutkimusmetodologia noudattaa sekä kokeellisia että laskennallisia menetelmiä. Kokeelliset menetelmät sisältävät hitsatun teräksen väsytystestaukset laboratoriossa, hitsausten jälkikäsittelyt (HiFIT) sekä perusaineelle ja hitseille tehtävät metallurgiset tutkimukset. Väsytyskokeista saatavia tuloksia verrataan kansainvälisen hitsausinstituutin (IIW) vahvistamiin rakennekohtaisiin standardeihin sekä kirjallisuudessa esiintyviin tutkimustuloksiin. Laskennalliset menetelmät sisältävät vertailulaskelmia tehollisen lovijännityksen (ENS) menetelmää hyödyntäen. Tehollisen lovijännityksen menetelmässä liitoksissa vaikuttavat teholliset lovijännitykset selvitetään elementtimenetelmän (FEM) avulla. Tulokset vahvistavat, että hitsauksella ja hitsausten jälkikäsittelyllä on suuri merkitys rakenteen kestoikään. Suurin osa väsytyskokeiden tuloksista osoitti parempia väsymiskestävyyden arvoja kuin rakennekohtaiset standardit, mutta liitosten liitosvirheiden todettiin heikentävän väsytyskestävyyttä. Jälkikäsittelyiden todettiin parantavan liitosten väsymiskestävyyden tuloksia ja todettiin tulosten olevan hyödynnettävissä mitoituksessa.
Resumo:
Some of the steel framework goes up during construction.
Resumo:
Steel reinforcing bars used in the construction of the walls for the Aquatic Centre.
Resumo:
The description reads "(1) General view of the Falls from the New Steel Bridge - 'Maid of the Mist' at landing - Niagara, U.S.A.". The reverse reads similar "General view from Suspension Bridge, Niagara Falls, U.S.A.".
Resumo:
The description of the image reads "(4)-8972-General view of Falls from new steel bridge - Maid of the Mist at landing - Niagara, U.S.A." The reverse of the image includes the description, "We are standing on the new steel bridge over Niagara River, 190 feet above the water and looking a little west of south, up the river towards Lake Erie. The high cliff at the extreme left, on the American side, is Prospect Point, where a crowd is gathered at this moment to view the Falls that we see just beyond Prospect Point. That dark, tree-covered mass of rock beyond is Goat Island; and just this side of Goat Island we see a bit of its precipice has been cut off separate from the rest by the powerful current of the waters - the smaller portion is Luna Island, and the Luna Falls go pouring down between the two islands. The face of the precipice curves inward beneath the Luna Falls leaving behind the 160 foot sheet of water the unearthly hollow known as the Cave of the Winds. Beyond Goat Island we see the gigantic curve of the Horseshoe Falls, 3,010 feet long and 158 feet high, reaching around through the clouds of spray to the farther Canadian shore. (The boundary line between British and American territory is in mid-stream.) It has been estimated that every minute 375,000 tons of water pour over these Horseshoe Falls, and they are wearing away the cliffs, moving back up the stream at the rate of 2.4 feet per year. It was probably only about a thousand years ago that they took their plunge just about where we stand now. Down there below us, at the wharf is the Maid of the Mist at the American landing taking on passengers who have come down the steep bank by the inclined railway. Its course takes it through those clouds of spray almost to the very foot of both Falls, - waters falling from 167 feet overhead, and water surging at least as many feet deep under the staunch little vessel. See special 'keyed' maps of Niagara pub. by Underwood and Underwood, also the Niagara Book by Mark Twain, W.D. Howells and others."
Resumo:
As a major manufacturing hub in southern Ontario, Hamilton enjoyed considerable economic stability during the twentieth century. However, like most industrial-based cities, Hamilton’s role as a North American manufacturing producer has faded since the 1970’s. This has resulted in dramatic socio-economic impacts, most of which are centered on the inner city. There have been many attempts to revive the core. This includes Hamilton’s most recent urban renewal plans, based upon the principles of Richard Florida’s creative city hypothesis and Ontario’s Places to Grow Act (2005). Common throughout all of Hamilton’s urban renewal initiatives has been the role of the local press. In this thesis I conduct a discourse analysis of media based knowledge production. I show that the local press reproduces creative city discourses as local truths to substantiate and validate a revanchist political agenda. By choosing to celebrate the creative class culture, the local press fails to question its repercussions
Resumo:
Indenture of assignment of mortgage between Jacob Thomas Nottle, land agent of Hamilton and George Steel of the Village of Romoka in the County of Middlesex regarding a parcel of land in the village of Romoka composed of Lot no. 17 in Block U. Robert Telfer granted to Ira Spalding these lands and premises subject to payment of principal money and interest (2 copies), June 18, 1874.