889 resultados para spiral computer assisted tomography
Resumo:
Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.
Resumo:
To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.
Resumo:
OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
OBJECTIVES: To analyze computer-assisted diagnostics and virtual implant planning and to evaluate the indication for template-guided flapless surgery and immediate loading in the rehabilitation of the edentulous maxilla. MATERIALS AND METHODS: Forty patients with an edentulous maxilla were selected for this study. The three-dimensional analysis and virtual implant planning was performed with the NobelGuide software program (Nobel Biocare, Göteborg, Sweden). Prior to the computer tomography aesthetics and functional aspects were checked clinically. Either a well-fitting denture or an optimized prosthetic setup was used and then converted to a radiographic template. This allowed for a computer-guided analysis of the jaw together with the prosthesis. Accordingly, the best implant position was determined in relation to the bone structure and prospective tooth position. For all jaws, the hypothetical indication for (1) four implants with a bar overdenture and (2) six implants with a simple fixed prosthesis were planned. The planning of the optimized implant position was then analyzed as follows: the number of implants was calculated that could be placed in sufficient quantity of bone. Additional surgical procedures (guided bone regeneration, sinus floor elevation) that would be necessary due the reduced bone quality and quantity were identified. The indication of template-guided, flapless surgery or an immediate loaded protocol was evaluated. RESULTS: Model (a) - bar overdentures: for 28 patients (70%), all four implants could be placed in sufficient bone (total 112 implants). Thus, a full, flapless procedure could be suggested. For six patients (15%), sufficient bone was not available for any of their planned implants. The remaining six patients had exhibited a combination of sufficient or insufficient bone. Model (b) - simple fixed prosthesis: for 12 patients (30%), all six implants could be placed in sufficient bone (total 72 implants). Thus, a full, flapless procedure could be suggested. For seven patients (17%), sufficient bone was not available for any of their planned implants. The remaining 21 patients had exhibited a combination of sufficient or insufficient bone. DISCUSSION: In the maxilla, advanced atrophy is often observed, and implant placement becomes difficult or impossible. Thus, flapless surgery or an immediate loading protocol can be performed just in a selected number of patients. Nevertheless, the use of a computer program for prosthetically driven implant planning is highly efficient and safe. The three-dimensional view of the maxilla allows the determination of the best implant position, the optimization of the implant axis, and the definition of the best surgical and prosthetic solution for the patient. Thus, a protocol that combines a computer-guided technique with conventional surgical procedures becomes a promising option, which needs to be further evaluated and improved.
Resumo:
PURPOSE The aim of the paper is to identify, review, analyze, and summarize available evidence in three areas on the use of cross-sectional imaging, specifically maxillofacial cone beam computed tomography (CBCT) in pre- and postoperative dental implant therapy: (1) Available clinical use guidelines, (2) indications and contraindications for use, and (3) assessment of associated radiation dose risk. MATERIALS AND METHODS Three focused questions were developed to address the aims. A systematic literature review was performed using a PICO-based search strategy based on MeSH key words specific to each focused question of English-language publications indexed in the MEDLINE database retrospectively from October 31, 2012. These results were supplemented by a hand search and gray literature search. RESULTS Twelve publications were identified providing guidelines for the use of cross-sectional radiography, particularly CBCT imaging, for the pre- and/or postoperative assessment of potential dental implant sites. The publications discovered by the PICO strategy (43 articles), hand (12), and gray literature searches (1) for the second focus question regarding indications and contraindications for CBCT use in implant dentistry were either cohort or case-controlled studies. For the third question on the assessment of associated radiation dose risk, a total of 22 articles were included. Publication characteristics and themes were summarized in tabular format. CONCLUSIONS The reported indications for CBCT use in implant dentistry vary from preoperative analysis regarding specific anatomic considerations, site development using grafts, and computer-assisted treatment planning to postoperative evaluation focusing on complications due to damage of neurovascular structures. Effective doses for different CBCT devices exhibit a wide range with the lowest dose being almost 100 times less than the highest dose. Significant dose reduction can be achieved by adjusting operating parameters, including exposure factors and reducing the field of view (FOV) to the actual region of interest.
Resumo:
Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.
Resumo:
This study was designed to evaluate the correlation between computed tomography findings and data from the physical examination and the Friedman Staging System (FSS) in patients with obstructive sleep apnea (OSA). We performed a retrospective evaluation by reviewing the medical records of 33 patients (19 male and 14 female patients) with a mean body mass index of 30.38 kg/m(2) and mean age of 49.35 years. Among these patients, 14 presented with severe OSA, 7 had moderate OSA, 7 had mild OSA, and 5 were healthy. The patients were divided into 2 groups according to the FSS: Group A comprised patients with FSS stage I or II, and group B comprised patients with FSS stage III. By use of the Fisher exact test, a positive relationship between the FSS stage and apnea-hypopnea index (P = .011) and between the FSS stage and body mass index (P = .012) was found. There was no correlation between age (P = .55) and gender (P = .53) with the FSS stage. The analysis of variance test comparing the upper airway volume between the 2 groups showed P = .018. In this sample the FSS and upper airway volume showed an inverse correlation and were useful in analyzing the mechanisms of airway collapse in patients with OSA.
Resumo:
OBJECTIVE:Endograft mural thrombus has been associated with stent graft or limb thrombosis after endovascular aneurysm repair (EVAR). This study aimed to identify clinical and morphologic determinants of endograft mural thrombus accumulation and its influence on thromboembolic events after EVAR. METHODS: A prospectively maintained database of patients treated by EVAR at a tertiary institution from 2000 to 2012 was analyzed. Patients treated for degenerative infrarenal abdominal aortic aneurysms and with available imaging for thrombus analysis were considered. All measurements were performed on three-dimensional center-lumen line computed tomography angiography (CTA) reconstructions. Patients with thrombus accumulation within the endograft's main body with a thickness >2 mm and an extension >25% of the main body's circumference were included in the study group and compared with a control group that included all remaining patients. Clinical and morphologic variables were assessed for association with significant thrombus accumulation within the endograft's main body by multivariate regression analysis. Estimates for freedom from thromboembolic events were obtained by Kaplan-Meier plots. RESULTS: Sixty-eight patients (16.4%) presented with endograft mural thrombus. Median follow-up time was 3.54 years (interquartile range, 1.99-5.47 years). In-graft mural thrombus was identified on 30-day CTA in 22 patients (32.4% of the study group), on 6-month CTA in 8 patients (11.8%), and on 1-year CTA in 17 patients (25%). Intraprosthetic thrombus progressively accumulated during the study period in 40 patients of the study group (55.8%). Overall, 17 patients (4.1%) presented with endograft or limb occlusions, 3 (4.4%) in the thrombus group and 14 (4.1%) in the control group (P = .89). Thirty-one patients (7.5%) received an aortouni-iliac (AUI) endograft. Two endograft occlusions were identified among AUI devices (6.5%; overall, 0.5%). None of these patients showed thrombotic deposits in the main body, nor were any outflow abnormalities identified on the immediately preceding CTA. Estimated freedom from thromboembolic events at 5 years was 95% in both groups (P = .97). Endograft thrombus accumulation was associated with >25% proximal aneurysm neck thrombus coverage at baseline (odds ratio [OR], 1.9; 95% confidence interval [CI], 1.1-3.3), neck length ≤ 15 mm (OR, 2.4; 95% CI, 1.3-4.2), proximal neck diameter ≥ 30 mm (OR, 2.4; 95% CI, 1.3-4.6), AUI (OR, 2.2; 95% CI, 1.8-5.5), or polyester-covered stent grafts (OR, 4.0; 95% CI, 2.2-7.3) and with main component "barrel-like" configuration (OR, 6.9; 95% CI, 1.7-28.3). CONCLUSIONS: Mural thrombus formation within the main body of the endograft is related to different endograft configurations, main body geometry, and device fabric but appears to have no association with the occurrence of thromboembolic events over time.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
Acetabular cup orientation is a key factor determining hip stability, and standard mechanical guides have shown little help in improving alignment. An in vitro study was carried out to compare the accuracy and precision of a new gravity-assisted guidance system with a standard mechanical guide. Three hundred ten cups were impacted by 5 surgeons, and the final cup orientation was measured. With the new guide, the average error in anteversion was 0.4 degrees , compared with 10.4 degrees with the standard guide and 0.3 degrees and -4.7 degrees , respectively, for abduction angles. The average time required for orienting the cups was similar for both guides. The accuracy and reproducibility obtained with the new guide were better (P < .0001). These good results would require a clinical validation.
Resumo:
Coronary artery calcification (CAC) is quantified based on a computed tomography (CT) scan image. A calcified region is identified. Modified expectation maximization (MEM) of a statistical model for the calcified and background material is used to estimate the partial calcium content of the voxels. The algorithm limits the region over which MEM is performed. By using MEM, the statistical properties of the model are iteratively updated based on the calculated resultant calcium distribution from the previous iteration. The estimated statistical properties are used to generate a map of the partial calcium content in the calcified region. The volume of calcium in the calcified region is determined based on the map. The experimental results on a cardiac phantom, scanned 90 times using 15 different protocols, demonstrate that the proposed method is less sensitive to partial volume effect and noise, with average error of 9.5% (standard deviation (SD) of 5-7mm(3)) compared with 67% (SD of 3-20mm(3)) for conventional techniques. The high reproducibility of the proposed method for 35 patients, scanned twice using the same protocol at a minimum interval of 10 min, shows that the method provides 2-3 times lower interscan variation than conventional techniques.
Resumo:
OBJECTIVE: The optimal coronary MR angiography sequence has yet to be determined. We sought to quantitatively and qualitatively compare four coronary MR angiography sequences. SUBJECTS AND METHODS. Free-breathing coronary MR angiography was performed in 12 patients using four imaging sequences (turbo field-echo, fast spin-echo, balanced fast field-echo, and spiral turbo field-echo). Quantitative comparisons, including signal-to-noise ratio, contrast-to-noise ratio, vessel diameter, and vessel sharpness, were performed using a semiautomated analysis tool. Accuracy for detection of hemodynamically significant disease (> 50%) was assessed in comparison with radiographic coronary angiography. RESULTS: Signal-to-noise and contrast-to-noise ratios were markedly increased using the spiral (25.7 +/- 5.7 and 15.2 +/- 3.9) and balanced fast field-echo (23.5 +/- 11.7 and 14.4 +/- 8.1) sequences compared with the turbo field-echo (12.5 +/- 2.7 and 8.3 +/- 2.6) sequence (p < 0.05). Vessel diameter was smaller with the spiral sequence (2.6 +/- 0.5 mm) than with the other techniques (turbo field-echo, 3.0 +/- 0.5 mm, p = 0.6; balanced fast field-echo, 3.1 +/- 0.5 mm, p < 0.01; fast spin-echo, 3.1 +/- 0.5 mm, p < 0.01). Vessel sharpness was highest with the balanced fast field-echo sequence (61.6% +/- 8.5% compared with turbo field-echo, 44.0% +/- 6.6%; spiral, 44.7% +/- 6.5%; fast spin-echo, 18.4% +/- 6.7%; p < 0.001). The overall accuracies of the sequences were similar (range, 74% for turbo field-echo, 79% for spiral). Scanning time for the fast spin-echo sequences was longest (10.5 +/- 0.6 min), and for the spiral acquisitions was shortest (5.2 +/- 0.3 min). CONCLUSION: Advantages in signal-to-noise and contrast-to-noise ratios, vessel sharpness, and the qualitative results appear to favor spiral and balanced fast field-echo coronary MR angiography sequences, although subjective accuracy for the detection of coronary artery disease was similar to that of other sequences.