916 resultados para solution and solubility


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of new synthetic strategies to obtain mono-disperse metal nanoparticles on large scales is an attractive prospect in the context of sustainability. Recently, amine-boranes, the classical Lewis acid-base adducts, have been employed as reducing agents for the synthesis of metal nanoparticles. They offer several advantages over the traditional reducing agents like the borohydrides; for example, a much better control of the rate of reduction and, hence, the particle size distribution of metal nanoparticles; diversity in their reducing abilities by varying the substituents on the nitrogen atom; and solubility in various protic and aprotic solvents. Amine-boranes have not only been used successfully as reducing agents in solution but also in solventless conditions, in which along with the reduction of the metal precursor, they undergo in situ transformation to afford the stabilizing agent for the generated metal nanoparticles, thereby bringing about atom economy as well. The use of amine boranes for the synthesis of metal nanoparticles has experienced an explosive growth in a very short period of time. In this Minireview, recent progress on the use of amine boranes for the synthesis of metal nanoparticles, with a focus towards the development of pathways for sustainability, is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two smectite samples having different layer charges were pillared using hydroxy aluminium oligomers at a OH/Al ratio of 2.5 and at pH 4.3 to 4.6. Pillaring was carried out at different conditions such as ageing, temperature and base addition time of the pillaring solution, and also in the presence of nonionic surfactant polyoxyethylene sorbitanmonooleate (Tween-80). The primary objective of preparing at different conditions was to introduce varied quantities of aluminium oligomer between the layers and to study its effect on the properties of the pillared products. A simple method has been followed to estimate the amount of interlayer aluminium. A quantity called pillar density number (PDN) based on the ratio of interlayer Al adsorbed to CEC of the parent clay has been effectively used to evaluate the nature of the resulting pillared product. PDN, for a given clay, was found to correlate well with the sharpness of the d(001) peaks for the air dried samples. The calculated number of pillars, varied from 3.00 x 10(18) to 5.32 x 10(18) per meq charge. The present study shows that a higher value of PDN is indicative of better thermal stability. Pillar density number may be conveniently used as a measure of the thermal stability of pillared samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A polyphosphate ester was synthesized by interfacial polycondensation of bisphenol-A and phenylphosphorodichloridate. Accelerated hydrolytic degradation studies were conducted under alkaline conditions. The effect of concentration of alkali and temperature were monitored. The rate of degradation reached a maximum value at 6 molar sodium hydroxide solution and then reduced. The activation energy for hydrolytic degradation was found to be 45 kcal/mol. Diffusion of alkali into the polymer pellet was studied at various concentrations of alkali and at various temperatures. The rate of diffusion also attained a maximum at 6M NaOH and the activation energy for diffusion process was found to be 12 kcal/mol. (C) 2002 John Wiley Sons, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we address a closed-form analytical solution of the Joule-heating equation for metallic single-walled carbon nanotubes (SWCNTs). Temperature-dependent thermal conductivity kappa has been considered on the basis of second-order three-phonon Umklapp, mass difference, and boundary scattering phenomena. It is found that kappa, in case of pure SWCNT, leads to a low rising in the temperature profile along the via length. However, in an impure SWCNT, kappa reduces due to the presence of mass difference scattering, which significantly elevates the temperature. With an increase in impurity, there is a significant shift of the hot spot location toward the higher temperature end point contact. Our analytical model, as presented in this study, agrees well with the numerical solution and can be treated as a method for obtaining an accurate analysis of the temperature profile along the CNT-based interconnects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tie lines delineating ion-exchange equilibria between FeCr2O4FeAl2O4 spinel solid solution and Cr2O3Al2O3 solid solution with corundum structure have been determined at 1373 K by electron microprobe and EDAX point count analysis of oxide phases equilibrated with metallic iron. Activities in the spinel solid solution are derived from the tie lines and the thermodynamic data on Cr2O3Al2O3 solid solution available in the literature. The oxygen potentials corresponding to the tie-line composition of oxide phases in equilibrium with metallic iron were measured using solid oxide galvanic cells with CaOZrO2 and Y2O3ThO2 electrolytes. These electrochemical measurements also yield activities in the spinel solid solution, in good agreement with those obtained from tie lines. The activity-composition relationship in the spinel solid solution is analysed in terms of the intra-crystalline ion exchange between the tetrahedral and octahedral sites of the spinel structures. The ion exchange is governed by site-preference energies of the cations and the entropy of cations mixing on each site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although Pb(Zr1−XTiX)O3 solid solution is the cornerstone of the piezoelectric ceramics, there is no information in the literature on thermodynamic activities of the component phases in the solid solution. Using inter-crystalline ion exchange equilibria between Pb(Zr1−XTiX)O3 solid solution with cubic perovskite structure and (Zr1−YTiY)O2 solid solutions with monoclinic and tetragonal structures, activities of PbTiO3 and PbZrO3 in the perovskite solid solution have been derived at 1373 K using the modified Gibbs–Duhem integration technique of Jacob and Jeffes. Tie-lines from the cubic solid solution are skewed towards the ZrO2 corner. Activities in the zirconia-rich (Zr1−YTiY)O2 solid solutions are taken from a recent emf study. The results for the perovskite solid solution at 1373 K can be represented by a sub-regular solution model:View the MathML sourcewhere ΔGE,M is the excess Gibbs energy of mixing of the cubic solid solution and Xi represents the mole fraction of component i. There is a significant positive deviation from ideality for PbTiO3-rich compositions and mild negative deviation near the PbZrO3 corner. The cubic solid solution is intrinsically stable against composition fluctuations at temperatures down to 840 K. The results contrast sharply with the recent calorimetric data on enthalpy of mixing which signal instability of the cubic perovskite solid solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermodynamic properties of Mn3O4, Mn2O3 and MnO2 are reassessed based on new measurements and selected data from the literature. Data for these oxides are available in most thermodynamics compilations based on older calorimetric measurements on heat capacity and enthalpy of formation, and high-temperature decomposition studies. The older heat capacity measurements did not extend below 50 K. Recent measurements have extended the low temperature limit to 5 K. A reassessment of thermodynamic data was therefore undertaken, supplemented by new measurements on high temperature heat capacity of Mn3O4 and oxygen chemical potential for the oxidation of MnO1-x, Mn3O4, and Mn2O3 to their respective higher oxides using an advanced version of solid-state electrochemical cell incorporating a buffer electrode. Because of the high accuracy now achievable with solid-state electrochemical cells, phase-equilibrium calorimetry involving the ``third-law'' analysis has emerged as a competing tool to solution and combustion calorimetry for determining the standard enthalpy of formation at 298.15 K. The refined thermodynamic data for the oxides are presented in tabular form at regular intervals of temperature.