984 resultados para solid-fluid separation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The separation performance of a semicontinuous counter-current chromatographic refiner (SCCR7), consisting of twelve 5.4 cm id x 75cm long columns packed with calcium charged cross-linked polysytrene resin (KORELA VO7C), was optimised. An industrial barley syrup was used containing 42% fructose, 52% glucose and 6% maltose and oligosaccharides. The effects of temperature, flow rates and concentration on the distribution coefficients were evaluated and quantified by deriving general relationships. The effects of flow rates, feed composition and concentration on the separation performance of the SCCR7 were identified and general relationships between them and the switch time, which was found to be the controlling parameter, were developed. Fructose rich (FRP) and glucose rich (GRP) product purities of 99.9% were obtained at 18.6% w/v feed concentrations. When a 66% w/v feed concentration was used and product splitting technique was employed, the throughput was 32.1 kg sugar solids/m3 resin/hr. The GRP contained less than 4.5% fructose, the FRP was over 95% pure, and the respective concentrations were 22.56 and 11.29% w/v. Over 94% of the glucose and 95.78% of the fructose in the feed were recovered in the GRP and FRP respectively. By recycling the dilute product split fractions, the GRP and FRP concentrations were increased to 25.4 and 12.96% w/v; the FRP was 90.2% pure and the GRP contained 6.69% w/v fructose. A theoretical link between batch and semicontinuous chromatographic equipments has been determined. A computer simulation was developed predicting successfully the purging concentration profiles at `pseudo-equilibrium', and also certain system design parameters. An important further aspect of the work has been to study the behaviour of chromatographic bioreactor-separators. Such batch systems of 5.4cm id and lengths varying between 30 and 230cm, were used to investigate the effect of scaling up on the conversion of sucrose into dextran and fructose in the presence of the dextransucrase enzyme. Conversions of over 80% were achieved at 4 hr sucrose residence times. The crude dextransucrase was purified using centrifugation, ultrafiltration and cross-flow microfiltration techniques. Better enzyme stability was obtained by first separating the non-solid impurities using cross-flow microfiltration, and then removing the cells from the enzyme immediately before use by continuous centrifugation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel macroporous solid bases have been developed as alternative clean technologies to existing commercial homogeneous catalysts for the production of biodiesel from triglycerides; the latter suffer process disadvantages including complex separation and associated saponification and engine corrosion, and are unsuitable for continuous operation. To this end, tuneable macroporous MgAl hydrotalcites have been prepared by an alkali-free route and characterised by TGA, XRD, SEM and XPS. The macropore architecture improves diffusion of bulky triglyceride molecules to the active base sites, increasing activity. Lamellar and macroporous hydrotalcites will be compared for the transesterification of both model and plant oil feedstocks, and structure-reactivity relations identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Eulerian-Eulerian CFD model was used to investigate the fast pyrolysis of biomass in a downer reactor equipped with a novel gas-solid separation mechanism. The highly endothermic pyrolysis reaction was assumed to be entirely driven by an inert solid heat carrier (sand). A one-step global pyrolysis reaction, along with the equations describing the biomass drying and heat transfer, was implemented in the hydrodynamic model presented in part I of this study (Fuel Processing Technology, V126, 366-382). The predictions of the gas-solid separation efficiency, temperature distribution, residence time and the pyrolysis product yield are presented and discussed. For the operating conditions considered, the devolatilisation efficiency was found to be above 60% and the yield composition in mass fraction was 56.85% bio-oil, 37.87% bio-char and 5.28% non-condensable gas (NCG). This has been found to agree reasonably well with recent relevant published experimental data. The novel gas-solid separation mechanism allowed achieving greater than 99.9% separation efficiency and < 2 s pyrolysis gas residence time. The model has been found to be robust and fast in terms of computational time, thus has the great potential to aid in future design and optimisation of the biomass fast pyrolysis process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid 4He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the primary studying, known leeches have included into free living and parasitic which the parasitic group, besides of direct impacts like: growth detraction, anemia, making wound in the connecting part with the skin, with making plat for secondary bacterial and molding infections in the toll place, is able to cause to transfer blood flagellate and virus to the fish too. Therefore, by accusing information related to fauna leeches of each area a risk factor from the viewpoint of the possibility of being or accusing transferred diseases by these leeches, one can predict and forehand about them. Freshwater leeches of Iran to present accurate recognition (morphological, molecular) have not been, and there are some limited reports from different parts of the country about them. One of the areas that its leeches have not been identified yet is Kurdistan, By having five latrines and big permanent rivers and 32000 springs and a lot of deep and semi-deep wells and this province is a convenient bed for growing aquatics in the country. Therefore, identifying risk factors for development of aquaculture on water resources is one important factor to access achieving development goals. For recognizing leeches of this province, some samples from 10 stands were token. Samples from under stones, sticking to the fish, turtles, plants and solid substances in the water were separated and after recording their physical characteristics, calming with 10% ethylic alcohol with 10% formalin become fixed and after painting with Carmen acetic acid by standard keys for 7 species of Helobdella stagnalis, Placobdella costata, Hemiclepsis marginata, Erpobdella octoculata, Hirudo medicinalis, Dina lineate lineata have been identified and described. Which Helobdella stagnalis has the highest distribution in the province and the minimum one is Hirudo medicinalis. However, that the data obtained in leeches in Kurdistan is a relatively complete collection in this research, recognizing fauna of these areas needs more studying. The Placobdella costata and Hemiclepsis marginata sticking to the fish were separated among identified species which showed that these are parasites for the fish. The sticking area of those leeches to the skin was accompanied with scales cast, damage to mucous membranes beneath the parasite and bleeding Was associated with Histopathology studying effect includes observing break and disconnection in the leech connecting place to the epithelial layer of epidermis in the skin, destroyed nucleus in skin Epithelial cells with observing necrosis in ulcerative place become of the leech and the sub acute inflammated penetration until acute necrosis with opening in Dermis layer is observable. Kidney of this fish have changes such as: proliferation, like proliferative kidney disease with increasing proliferative glomerular cells and increasing in membranous cells in Capillary corpuscle, observing necrotic cells in haematopoietic tissue of kidney along with increasing in infiltration of leukocyte's cells generally mono nucluars such as lymphocytes and less poly morpho nucluars such as neutrophiles that are symptoms of disorders causing anemia become of nourishing and sucking blood by the leech and creating a chronic kidney infection that originally root is in another place like the skin. Also Hemorrhagic anemia causes losing RBC's is because of using the host blood by the leech. (In this situation, one can see immature RBC red cells in Peripheral blood. To identify potential carriers of the leech to the viruses, after finding them in recorded stands and putting them in 75% ethanol for viruses cause IPN, VHS, IHN, they were tested by PCR that the conclusion of these experiments approved IPN virus in Hemiclepsis marginata and Hirudo medicinalis. This kind of leeches can act like a mechanical carrier and causing spreading the agent of this disease. It is worth mentioning that studying the pathogenicity of this virus for aquaculture sources, mentioned before needs more research. During the study of infected fish with leeches that was done after preparing bloody slides and staining them, no case blood parasites was observed. During a research about infecting fish experimentally to known leeches it become clear that 5 days after being in aquarium including leeches, samples of sticking Hirudo medicinalis leech to the golden carp with scales cast were observed. Including leeches to the fish started with molting the scales in the sticking area in the fish and fish become too uneasy and by rubbing themselves to the malls and things inside the aquarium, tried to separate them. Finally, after around 30 hours, leeches penetrate the skin, feeding from blood and tissue liquids and cause mortality the fish and then they become separated from them. If the corpse of these fish stayed in the aquarium, the Helobdella stagnalis and Erpobdella octoculata would start feeding them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural crops can be damaged by funguses, insects, worms and other organisms that cause diseases and decrease the yield of production. The effect of these damaging agents can be reduced using pesticides. Among them, triazole compounds are effective substances against fungus; for example, Oidium. Nevertheless, it has been detected that the residues of these fungicides in foods as well as in derivate products can affect the health of the consumers. Therefore, the European Union has established several regulations fixing the maximum residue of pesticide levels in a wide range of foods trying to assure the consumer safety. Hence, it is very important to develop adequate methods to determine these pesticide compounds. In most cases, gas or liquid chromatographic (GC, LC) separations are used in the analysis of the samples. But firstly, it is necessary to use proper sample treatments in order to preconcentrate and isolate the target analytes. To reach this aim, microextraction techniques are very effective tools; because allow to do both preconcentration and extraction of the analytes in one simple step that considerably reduces the source of errors. With these objectives, two remarkable techniques have been widely used during the last years: solid phase microextraction (SPME) and liquid phase microextraction (LPME) with its different options. Both techniques that avoid the use or reduce the amount of toxic solvents are convenient coupled to chromatographic equipments providing good quantitative results in a wide number of matrices and compounds. In this work simple and reliable methods have been developed using SPME and ultrasound assisted emulsification microextraction (USAEME) coupled to GC or LC for triazole fungicides determination. The proposed methods allow confidently determine triazole concentrations of μg L‐1 order in different fruit samples. Chemometric tools have been used to accomplish successful determinations. Firstly, in the selection and optimization of the variables involved in the microextraction processes; and secondly, to overcome the problems related to the overlapping peaks. Different fractional factorial designs have been used for the screening of the experimental variables; and central composite designs have been carried out to get the best experimental conditions. Trying to solve the overlapping peak problems multivariate calibration methods have been used. Parallel Factor Analysis 2 (PARAFAC2), Multivariate Curve Resolution (MCR) and Parallel Factor Analysis with Linear Dependencies (PARALIND) have been proposed, the adequate algorithms have been used according to data characteristics, and the results have been compared. Because its occurrence in Basque Country and its relevance in the production of cider and txakoli regional wines the grape and apple samples were selected. These crops are often treated with triazole compounds trying to solve the problems caused by the funguses. The peel and pulp from grape and apple, their juices and some commercial products such as musts, juice and cider have been analysed showing the adequacy of the developed methods for the triazole determination in this kind of fruit samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic Municipal Solid Waste Management (MSWM) authorities of Sri Lanka contributes to exchange some productive outputs with localities; however it is still not in a successful mode due to limitations and environmental failures in their operation. Most of these local administrations are directly dumping Municipal Solid Waste (MSW) to an open dumping site, this manner of inappropriate disposal of MSW is become a major threat to the environment and public health in developing countries like Sri Lanka. This study was conducted for the MSWM practices of Balangoda Urban Council. The research was performed based on analyzing information obtained from field observations; reports; literature; questionnaire distribution among community; and a series of formal interviews with major stakeholders. The ongoing MSWM practices of Balangoda Urban Council encompass six categories as waste minimization and handling; waste collection; on-site separation; waste transportation; further management including grading, composting, recycling, producing sludge fertilizer; and final disposal to an open dump site. Apart from those, training sessions on MSWM are also being conducted. The purpose of this paper is to assess current status of urban waste management scenario and highlight strengths and weaknesses to understand the sustainability of the system which would help any local authority to improve MSWM.