962 resultados para small angle X-ray analysis
Resumo:
The self-assembly of three cosmetically active peptide amphiphiles C16-GHK, C16-KT, and C16-KTTKS (C16 denotes a hexadecyl, palmitoyl chain) used in commercial skin care products is examined. A range of spectroscopic, microscopic, and X-ray scattering methods is used to probe the secondary structure, aggregate morphology, and the nanostructure. Peptide amphiphile (PA) C16-KTTKS forms flat tapes and extended fibrillar structures with high β-sheet content. In contrast, C16-KT and C16-GHK exhibit crystal-like aggregates with, in the case of the latter PA, lower β-sheet content. All three PA samples show spacings from bilayer structures in small-angle X-ray scattering profiles, and all three have similar critical aggregation concentrations, this being governed by the lipid chain length. However, only C16-KTTKS is stained by Congo red, a diagnostic dye used to detect amyloid formation, and this PA also shows a highly aligned cross-β X-ray diffraction pattern consistent with the high β-sheet content in the self-assembled aggregates. These findings may provide important insights relevant to the role of self-assembled aggregates on the reported collagen-stimulating properties of these PAs.
Resumo:
We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis.
Resumo:
The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.
Resumo:
A macroscopically oriented double diamond inverse bicontinuous cubic phase (QIID) of the lipid glycerol monooleate is reversibly converted into a gyroid phase (QIIG). The initial QIID phase is prepared in the form of a film coating the inside of a capillary, deposited under flow, which produces a sample uniaxially oriented with a ⟨110⟩ axis parallel to the symmetry axis of the sample. A transformation is induced by replacing the water within the capillary tube with a solution of poly(ethylene glycol), which draws water out of the QIID sample by osmotic stress. This converts the QIID phase into a QIIG phase with two coexisting orientations, with the ⟨100⟩ and ⟨111⟩ axes parallel to the symmetry axis, as demonstrated by small-angle X-ray scattering. The process can then be reversed, to recover the initial orientation of QIID phase. The epitaxial relation between the two oriented mesophases is consistent with topologypreserving geometric pathways that have previously been hypothesized for the transformation. Furthermore, this has implications for the production of macroscopically oriented QIIG phases, in particular with applications as nanomaterial templates.
Resumo:
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.
Resumo:
A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0–8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.
Resumo:
Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea–urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation.
Resumo:
A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.
Resumo:
Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.
Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides
Resumo:
Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.