945 resultados para sludge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N-2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this achievement turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined how the floc characteristics affect dewaterability of activated sludge. The floc properties were characterized by morphological parameters (floc size distribution, fractal dimension and filament index), physical properties (flocculating ability, surface charge, relative hydrophobicity and viscosity), and chemical constituents in sludge and extracted extracellular polymeric substances (EPS), including the polymeric compounds protein, humic substances, carbohydrates and the ions Ca2+, Mg2+, Fe3+ and Al3+. The dewaterability was defined in terms of the bound water content and capillary suction time (CST). The bound water and CST corresponded to a similar indication with respect to dewaterability of activated sludge. The floc physical parameters were the most important factors which effect significantly on the water binding ability of the sludge flocs. The morphological characteristics had relatively weak impact on the dewaterability. The polymeric components protein and carbohydrate had a significant contribution to enhance the water binding ability of the sludge flocs. The effect of humic substances in the sludge on the dewaterability was, however, insignificant. The CST had good statistical correlations with the polymeric constituents measured in both sludge and the extracted EPS, and the bound water was only correlated well with the individual polymers measured in the sludge. High concentration of Ca2+, Mg2+, Fe3+ and Al3+ had significant improvement for dewaterability. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse). The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge ( PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay ( Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3- accumulation in the field. Piggery pond sludge was applied as-collected ( wet PPS) and following stockpiling to dry ( stockpiled PPS). Soil NO3- levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3- in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum ( Sorghum bicolor) and wheat ( Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% ( range 12 - 47%) of total N from the wet PPS and 19% ( range 0 - 50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop ( 1998 barley, Hordeum vulgare) suggests that leaching of NO3- could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3- in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N ( 19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil pro. le NO3- were used in combination (R-2 = 0.49).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response of an aerobic upflow sludge blanket (AUSB) reactor system to the changes in operating conditions was investigated by varying two principle operating variables: the oxygenation pressure and the flow recirculation rate. The oxygenation pressure was varied between 0 and 25 psig (relative), while flow recirculation rates were between 1,300 and 600% correspondingly. The AUSB reactor system was able to handle a volumetric loading of as high as 3.8 kg total organic carbon (TOC)/m(3) day, with a removal efficiency of 92%. The rate of TOC removal by AUSB was highest at a pressure of 20 psig and it decreased when the pressure was increased to 25 psig and the flow recirculation rate was reduced to 600%. The TOC removal rate also decreased when the operating pressure was reduced to 0 and 15 psig, with corresponding increase in flow recirculation rates to 1,300 and 1,000%, respectively. Maintenance of a high dissolved oxygen level and a high flow recirculation rate was found to improve the substrate removal capacity of the AUSB system. The AUSB system was extremely effective in retaining the produced biomass despite a high upflow velocity and the overall sludge yield was only 0.24-0.32 g VSS/g TOC removed. However, the effluent TOC was relatively high due to the system's operation at a high organic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months ( Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term ( 30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (N-o) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the Wet PPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R-2 = 0.96), although it was

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-frying, which consists of immersing a wet material in a large volume of hot oil, presents a process easily adaptable to dry rather than cook materials. A suitable material for drying is sewage sludge, which may be dried using recycled cooking oils (RCO) as frying oil. One advantage is that this prepares both materials for convenient disposal by incineration. This study examines fry-drying of municipal sewage sludge using recycled cooking oil. The transport processes occurring during fry-drying were monitored through sample weight, temperature, and image analysis. Due to the thicker and wetter samples than the common fried foods, high residual moisture is observed in the sludge when the boiling front has reached the geometric center of the sample, suggesting that the operation is heat transfer controlled only during the first half of the process followed by the addition of other mechanisms that allow complete drying of the sample. A series of mechanisms comprising four stages (i.e., initial heating accompanied by a surface boiling onset, film vapor regime, transitional nucleate boiling, and bound water removal) is proposed. In order to study the effect of the operating conditions on the fry-drying kinetics, different oil temperatures (from 120 to 180 degrees C), diameter (D = 15 to 25 mm), and initial moisture content of the sample (4.8 and 5.6 kg water(.)kg(-1) total dry solids) were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 g NH4+-N m(-3) d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2gCODg(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation, Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426(T), 89(.)8% sequence similarity). In pure culture, the cells (1(.)5-2(.)0 mu m) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 degrees C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C-18: 1 omega 7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C-19: 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G + C content of the DNA is 42(.)9 mol% (for strain Gr1(T)). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1(T) and Gr10; 97(.)7 % identical) showed 71(.)5 % DNA-DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1(T) (=DSM 15528(T) =ATCC BAA-740(T)).