771 resultados para skull ontogeny
Resumo:
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.
Resumo:
Objectives This study aims to (1) discuss rare nasopharyngeal masses originating from embryologic remnants of the clivus, and (2) discuss the embryology of the clivus and understand its importance in the diagnosis and treatment of these masses. Design and Participants This is a case series of three patients. We discuss the clinical and imaging characteristics of infrasellar craniopharyngioma, intranasal extraosseous chordoma, and canalis basilaris medianus. Results Case 1: A 16-year-old male patient with a history of craniopharyngioma resection, who presented with nasal obstruction. A nasopharyngeal cystic mass was noted to be communicating with a patent craniopharyngeal canal. Histology revealed adamantinomatous craniopharyngioma. Case 2: A 43-year-old male patient who presented with nasal obstruction and headache. Computed tomography (CT) and magnetic resonance imaging revealed an enhancing polypoid mass in the posterior nasal cavity abutting the clivus. Histopathology revealed chondroid chordoma. Case 3: A 4-year-old female patient with a recurrent nasopharyngeal polyp. CT cisternogram showed that this mass may have risen from a bony defect of the middle clivus suggestive of canalis basilaris medianus. Conclusions Understanding the embryology of the clivus is crucial when considering the differential diagnosis of a nasopharyngeal mass. Identification of characteristic findings on imaging is critical in the diagnosis and treatment of these lesions.
Resumo:
This work presents computation analysis of levitated liquid thermal and flow fields with free surface oscillations in AC and DC magnetic fields. The volume electromagnetic force distribution is continuously updated with the shape and position change. The oscillation frequency spectra are analysed for droplets levitation against gravity in AC and DC magnetic fields at various combinations. For larger volume liquid metal confinement and melting the semi-levitation induction skull melting process is simulated with the same numerical model. Applications are aimed at pure electromagnetic material processing techniques and the material properties measurements in uncontaminated conditions.
Resumo:
The cold crucible, or induction skull melting process as is otherwise known, has the potential to produce high purity melts of a range of difficult to melt materials, including Ti–Al and Ti6Al4V alloys for Aerospace, Ti–Ta and other biocompatible materials for surgical implants, silicon for photovoltaic and electronic applications, etc. A water cooled AC coil surrounds the crucible causing induction currents to melt the alloy and partially suspend it against gravity away from water-cooled surfaces. Strong stirring takes place in the melt due to the induced electromagnetic Lorentz forces and very high temperatures are attainable under the right conditions (i.e., provided contact with water cooled walls is minimised). In a joint numerical and experimental research programme, various aspects of the design and operation of this process are investigated to increase our understanding of the physical mechanisms involved and to maximise process efficiency. A combination of FV and Spectral CFD techniques are used at Greenwich to tackle this problem numerically, with the experimental work taking place at Birmingham University. Results of this study, presented here, highlight the influence of turbulence and free surface behaviour on attained superheat and also discuss coil design variations and dual frequency options that may lead to winning crucible designs.
Resumo:
The cold crucible, or induction skull melting process as is otherwise known, has the potential to produce high purity melts of a range of difficult to melt materials, including Ti–Al and Ti6Al4V alloys for Aerospace, Ti–Ta and other biocompatible materials for surgical implants, silicon for photovoltaic and electronic applications, etc. A water cooled AC coil surrounds the crucible causing induction currents to melt the alloy and partially suspend it against gravity away from water-cooled surfaces. Strong stirring takes place in the melt due to the induced electromagnetic Lorentz forces and very high temperatures are attainable under the right conditions (i.e., provided contact with water cooled walls is minimised). In a joint numerical and experimental research programme, various aspects of the design and operation of this process are investigated to increase our understanding of the physical mechanisms involved and to maximise process efficiency. A combination of FV and Spectral CFD techniques are used at Greenwich to tackle this problem numerically, with the experimental work taking place at Birmingham University. Results of this study, presented here, highlight the influence of turbulence and free surface behaviour on attained superheat and also discuss coil design variations and dual frequency options that may lead to winning crucible designs.
Resumo:
TiAl castings are prone to various defects including bubbles entrained during the turbulent filling of moulds. The present research has exploited the principles of the Durville tilt casting technique to develop a novel process in which the Induction Skull Melting (ISM) of TiAl alloys in a vacuum chamber has been combined with controlled tilt pouring to achieve the tranquil transfer of the metal into a hot ceramic shell mould. Practical casting equipment has been developed to evaluate the feasibility of this process in parallel with the development of novel software to simulate and optimize it. The PHYSICA CFD code was used to simulate the filling, heat transfer and solidification during tilt pouring using a number of free surface modelling techniques, including the novel Counter Diffusion Method (CDM). In view of the limited superheat, particular attention was paid to the mould design to minimize heat loss and gas entrainment caused by interaction between the counter-flowing metal and gas streams. The model has been validated against real-time X-ray movies of the tilt casting of aluminium and against TiAl blade castings. Modelling has contributed to designing a mould to promote progressive filling of the casting and has led to the use of a parabolic tilting cycle to balance the competing requirements for rapid filling to minimize the loss of superheat and slow filling minimize the turbulence-induced defects.
Resumo:
The resolution of the SSU rRNA gene for phylogenetic analysis in the diatoms has been evaluated by Theriot et al. who claimed that the SSU rRNA gene could not be used to resolve the monophyly of the three diatoms classes described by Medlin and Kaczmarska. Although they used both only bolidomonads and heterokonts as outgroups, they did not explore outgroups further away than the heterokonts. In this study, the use of the multiple outgroups inside and outside the heterokonts with the rRNA gene for recovering the three monophyletic clades at the class level is evaluated. Trees with multiple outgroups ranging from only bolidophytes to Bacteria and Archea were analyzed with Bayesian and Maximum Likelihood analyses and two data sets were recovered with the classes being monophyletic. Other data sets were analyzed with non-weighted and weighted maximum parsimony. The latter reduced the number of clades and lengthened branch lengths between the clades. One data set using a weighted analysis recovered the three classes as monophyletic. Taking only bolidophytes as the only outgroup never produced monophyletic clades. Multiple outgroups including many heterokonts and certain members of the crown group radiation recovered monophyletic clades. The three classes can be defined by clear morphological differences primarily based on auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. A cladistic analysis of some of these features is presented and recovers the three classes.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Background: Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation.
Results: We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation.
Conclusion: Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.
Resumo:
The Great Cave of Niah in Sarawak (northern Borneo) came into the gaze of Western Science through the work of Alfred Russell Wallace, who came to Sarawak in the 1850s to search for ‘missing links’ in his pioneering studies of evolution and the natural history of Island Southeast Asia and Australasia. The work of Tom and Barbara Harrisson in the 1950s and 1960s placed the Great Cave, and particularly their key find, the ‘Deep Skull’, at the nexus of the evolving archaeological framework for the region: for decades the skull, dated in 1958 by adjacent charcoal to c.40,000 BP, was the oldest fossil of an anatomically modern human anywhere in the world and thus critical to ideas about human evolution and dispersal. Although several authorities later questioned the provenance and antiquity of the Deep Skull, renewed investigations of the Harrisson excavations since 2000 have shown that it can be attributed securely to a specific location in the Pleistocene stratigraphy, with direct U-series dating on a piece of the skull indicating an age for it of c.37,500 BP and the first evidence for associated human activity at the site going back to c.50,000 BP. The new work also indicates that the skull is part of a cultural deposit, perhaps a precursor to the long tradition in Borneo of processing of the dead and secondary burial. These indicators of cultural complexity chime with the complexity of the subsistence behaviour of the early users of the caves discussed by Philip Piper and Ryan Rabett in chapter ten of this volume.
Resumo:
The ontogeny of continent-wide navigation mechanisms of the individual organism, despite being crucial for the understanding of animal movement and migration, is still poorly understood. Several previous studies, mainly conducted on passerines, indicate that inexperienced, juvenile birds may not generally correct for displacement during fall migration. Waterbirds such as the mallard (Anas platyrhynchos, Linnaeus 1758) are more flexible in their migration behavior than most migratory songbirds, but previous experiments with waterbirds have not yet allowed clear conclusions about their navigation abilities. Here we tested whether immature mallard ducks correct for latitudinal displacement during fall migration within Europe. During two consecutive fall migration periods, we caught immature females on a stopover site in southeast Sweden, and translocated a group of them ca. 1,000 km to southern Germany. We followed the movements of the ducks via satellite GPS-tracking and observed their migration decisions during the fall and consecutive spring migration. The control animals released in Ottenby behaved as expected from banding recoveries: they continued migration during the winter and in spring returned to the population's breeding grounds in the Baltics and Northwest Russia. Contrary to the control animals, the translocated mallards did not continue migration and stayed at Lake Constance. In spring, three types of movement tactics could be observed: 61.5% of the ducks (16 of 26) stayed around Lake Constance, 27% (7 of 26) migrated in a northerly direction towards Sweden and 11.5% of the individuals (3 of 26) headed east for ca. 1,000 km and then north. We suggest that young female mallards flexibly adjust their migration tactics and develop a navigational map that allows them to return to their natal breeding area.
Resumo:
OBJECTIVE: The present work was planned to report the incidence of calcification and ossification of an isolated cranial dural fold. The form, degree of severity and range of extension of such changes will be described. Involvement of the neighboring brain tissue and blood vessels, whether meningeal or cerebral, will also be determined. The results of this study might highlight the occasional incidence of intracranial calcification and ossification in images of the head and their interpretation, by radiologists and neurologists, to be of dural or vascular origin.
METHODS: Two human formalin-fixed cadavers, one middle-aged female another older male, were investigated at the Anatomy Laboratory, College of Medicine, King Faisal University, Dammam, Kingdom of Saudi Arabia during the period from 2000 to 2003. In each cadaver, the skullcap was removed and the convexity of the cranial dura mater, as well as the individual dural folds, were carefully examined for any calcification or ossification. The meningeal and cerebral blood vessels together with the underlying brain were grossly inspected for such structural changes. Calcified or ossified tissues, when identified, were subjected to histological examination to confirm their construction.
RESULTS: The female cadaver showed a calcified parietal emissary vein piercing the skullcap and projecting into the scalp. The latter looked paler and deficient in hair on its right side. The base of the stump was surrounded by a granular patch of calcification. The upper convex border of the falx cerebri was hardened and it presented granules, plaques and a cauliflower mass, which all proved to be osseous in structure. The meningeal and right cerebral vessels were mottled with calcium granules. The underlying temporal and parietal lobes of the right cerebral hemisphere were degenerated. The male cadaver also revealed a calcified upper border of the falx cerebri and superior sagittal sinus. Osseous granules and plaques, similar to those of the first specimen, were also identified but without gross changes in the underlying brain.
CONCLUSION: Calcification or ossification of an isolated site of the cranial dura mater and the intracranial blood vessels might occur. These changes should be kept in mind while interpreting images of the skull and brain. Clinical assessment and laboratory investigations are required to determine whether these changes are idiopathic, traumatic, or as a manifestation of a generalized disease such as hyperparathyroidism, vitamin D-intoxication, or chronic renal failure.
Resumo:
Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an `intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The paper describes the initial results from renewed investigations at Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 of the c. 40,000-year old 'Deep Skull'. The archaeological sequences from the West Mouth and the other entrances of the cave complex investigated by Tom and Barbara Harrisson and other researchers have potential implications for three major debates regarding the prehistory of south-east Asia: the timing of initial settlement by anatomically modern humans; the means by which they subsisted in the late Pleistocene and early Holocene; and the timing, nature, and causation of the transition from foraging to farming. The new project is informing on all three debates. The critical importance of the Niah stratigraphies was commonly identified - including by Tom Harrisson himself - as because the site provided a continuous sequence of occupation over the past 40,000 years. The present project indicates that Niah was first used at least 45,000 years ago, and probably earlier; that the subsequent Pleistocene and Holocene occupations were highly variable in intensity and character; and that in some periods, perhaps of significant duration, the caves may have been more or less abandoned. The cultural sequence that is emerging from the new investigations may be more typical of cave use in tropical rainforests in south-east Asia than the Harrisson model.
Resumo:
A moving image work based on research with neurologists and audiologists, collectors and archivists. The film gives voice to the idea that every surface, in particular parts of our anatomy, is potentially inscribed with an unheard sound or echoes of voices from the past. The soundtrack’s musical composition is interlaced with a voice-over which draws on Rainer Maria Rilke’s text 'Primal Sound', where he reflects on the possibility of playing the coronal suture of a skull with a phonograph needle. The film uses microscopic photography, scanning electron microscopy, and sounds of otoacoustic emissions to uncover haunting aural bonescapes. The voiceovers too are recorded using old sound technology as a filter - writing and over-writing of wax cylinder to create unexpected scratches, glitches, loops and echoes. Exhibitions: shown as multi-channel sound/film installation AV festival (Newcastle 2010); solo exhibition at Wellcome Collection (London 2010-11); group exhibition ‘Samsung Art+ Prize’ BFI Southbank (London 2012); group exhibition ‘Transcendence’, Gertrude Contemporary, Melbourne (2014); solo exhibition as part of the International Rotterdam Film Festival (2013); group exhibition ‘The Sight of Sound’, Deutsche Bank VIP Lounge, Frieze Art Fair, NY (2012). Screenings: mini-retrospective at the Lincoln Centre, NY, as part of the New York Film Festival (2013); Jarman Award Tour screenings (2012, venues included Whitechapel Gallery, London; FACT, Liverpool; CCA, Glasgow; The Northern Charter in partnership with CIRCA projects; Nottingham Contemporary, Nottingham; Watershed, Bristol; Duke of York Cinema, Brighton), Whitechapel Gallery, London; FACT, Liverpool; CCA, Glasgow; The Northern Charter in partnership with CIRCA projects, Newcastle (special Q&A Aura Satz with Rebecca Shatwell, director of AV festival); Nottingham Contemporary, Nottingham; Watershed, Bristol; Duke of York Cinema, Brighton; Mini-retrospective at Tate Britain (London 2014); Mini-retrospective screening, DIM Cinema, The Cinematheque (Vancouver 2015); Mini-retrospective at Whitechapel Gallery (London 2016). Publications: ‘Sound Seam’ booklet with contributions by Steven Connor and Tom McCarthy (2010).