925 resultados para simulated body fluid
The application of bioimpedance analysis to monitor fluid losses and shifts associated with exercise
Resumo:
The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.
Resumo:
A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.
Resumo:
A, dry, non-hydrostatic sub-cloud model is used to simulate an isolated stationary downburst wind event to study the influence topographic features have on the near-ground wind structure of these storms. It was generally found that storm maximum wind speeds could be increased by up to 30% because of the presence of a topographic feature at the location of maximum wind speeds. Comparing predicted velocity profile amplification with that of a steady flow impinging jet, similar results were found despite the simplifications made in the impinging jet model. Comparison of these amplification profiles with those found in the simulated boundary layer winds reveal reductions of up to 30% in the downburst cases. Downburst and boundary layer amplification profiles were shown to become more similar as the topographic feature height was reduced with respect to the outflow depth.
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.
Resumo:
The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.
Resumo:
The flow, heat and mass transfer on the unsteady laminar incompressible boundary layer in micropolar fluid at the stagnation point of a 2-dimensional and an axisymmetric body have been studied when the free stream velocity and the wall temperature vary arbitrarily with time. The partial defferential equations governing the flow have been solved numerically using a quasilinear finite-difference scheme. The skin friction, microrotation gradient and heat transfer parameters are found to be strongly dependent on the coupling parameter, mass transfer and time, whereas the effect of the microrotation parameter on the skin friction and heat transfer is rather weak, but microrotation gradient is strongly affected by it. The Prandtl number and the variation of the wall temperature with time affect the heat-transfer very significantly but the skin friction and micrortation gradient are unaffected by them.
Resumo:
A blunt-nosed hypersonic missile mounted with a forward-facing cavity is a good alternative to reduce the stagnation heating rates. The effects of a forward-racing cavity on heat transfer and aerodynamic coefficients are addressed in this paper. Tests were carried out in hypersonic shock tunnel HST2, at a hypersonic Mach number of 8 using a 41 deg apex-angle blunt cone. The aerodynamic forces on the test model with and without a forward-facing cavity at various angles of attack are measured by using an internally mountable accelerometer force balance system. Heat flux measurements have been carried out on the test model with and without a forward-facing cavity of the entire surface at zero degree angle of attack with platinum sensors. A numerical simulation was also carried out using the computational fluid dynamics code (CFX-Ansys 5.7). An important result of this study is that the smaller cavity diameter has the highest lift-to-drag ratio, whereas the medium cavity has the highest heat flux reduction. Theshock structure around the test model has also been visualized using the Schlieren flow visualization technique. The visualized shock structure and the measured aerodynamic forces on the missile-shaped body with cavity configurations agree well with the axisymmetric numerical simulations.
Resumo:
OBJECTIVE To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance.
Resumo:
Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control (<8), 15, 30, and 45 ppm, on the physiology and behavior of steers were recorded. The animals were held for 12 d under a micro-climate and stocking density similar to shipboard conditions experienced on voyages from Australia to the Middle East during the northern hemispheric summer. In bronchoalveolar lavage samples, ammonia increased (P < 0.05) macrophage activity in proportion to NH3 concentration and it increased (P < 0.05) neutrophil percentage at 30 and 45 ppm, indicating active pulmonary inflammation. It also increased (P < 0.05) lacrimation, nasal secretions and coughing, particularly at 45 ppm, indicating that the NH3 was irritating the mucous membranes of the eyes, nasal cavity and respiratory tract. Ammonia had no effect (P > 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers.