902 resultados para simulação
Resumo:
Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Petroleum evaluation is analyze it using different methodologies, following international standards to know their chemical and physicochemical properties, contaminant levels, composition and especially their ability to generate derivatives. Many of these analyzes consuming a lot of time, large amount of samples , supplies and need an organized transportation logistics, schedule and professionals involved. Looking for alternatives that optimize the evaluation and enable the use of new technologies, seven samples of different centrifuged Brazilian oils previously characterized by Petrobras were analyzed by thermogravimetry in 25-900° C range using heating rates of 05, 10 and 20ºC per minute. With experimental data obtained, characterizations correlations were performed and provided: generation of true boiling point curves (TBP) simulated; comparing fractions generated with appropriate cut standard in temperature ranges; an approach to obtain Watson characterization factor; and compare micro carbon residue formed. The results showed a good chance of reproducing simulated TBP curve from thermogravimetry taking into account the composition, density and other oil properties. Proposed correlations for experimental characterization factor and carbon residue followed Petrobras characterizations, showing that thermogravimetry can be used as a tool on oil evaluation, because your quick analysis, accuracy, and requires a minimum number of samples and consumables
Resumo:
A caracterização anatômica, física, mecânica e química da madeira fornece informações importantes para sua melhor utilização. Contudo, para que madeiras se tornem boa opção para o mercado de pisos, adicionalmente é necessária a realização de ensaios que simulem suas reais condições em serviço. Esses ensaios simulam o pisoteio executado pelos sapatos de salto com pequenas áreas de pressão, o arraste e a queda de objetos, a resistência à abrasão da superfície e o atrito oferecido durante o deslocamento de pessoas que caminham sobre ele. Grande dificuldade da seleção de novas madeiras para pisos está na ausência de valores de referência físico-mecânicos. O presente trabalho visou a caracterizar as madeiras de Eucalyptus clöeziana F. Muell, de Eucalyptus microcorys F. Muell e de Corymbia maculata Hook, para as propriedades de densidade básica, retratibilidade, aplicação de carga rolante, de atrito estático e dinâmico, endentação causada por cargas aplicadas em pequenas áreas, impacto da esfera de aço cadente e resistência à abrasão. Foi observado que as madeiras estudadas podem ser utilizadas para a confecção de pisos, de acordo com seus resultados obtidos e por meio de comparações com resultados de literatura.
Resumo:
Em trabalho realizado em 1998, no município de Taiúva-SP, objetivou-se avaliar o efeito da simulação da deriva de doses crescentes, até atingir a recomendada comercialmente, de clomazone, em duas formulações, e de clomazone em mistura com ametryne, em laranjeira-'Hamlin' com frutos com 2 a 4 cm de diâmetro. O delineamento experimental utilizado foi o de blocos casualizados, com 15 tratamentos, em 3 repetições. As avaliações basearam-se em possíveis alterações morfofisiológicas das plantas, com determinações do teor de clorofila total nas folhas, porcentagem de abortamento de frutos, além de análise tecnológica dos frutos. Concluiu-se que a dose comercial de clomazone isolado e em mistura com ametryne a 50 e 100% da dose resultou na formação de manchas cloróticas e/ou necróticas na casca do fruto e causou mortalidade de ramos que se encontravam em crescimento vegetativo, não acarretando qualquer alteração qualitativa do suco.
Resumo:
The objective of this work was to evaluate the effect of the variables number of recipients, synchronization protocol, reproductive efficiency indicators and pregnancy cost, in the economic effectiveness of in vivo and in vitro bovine embryo production. A simulation application was elaborated to allow the user to insert the input variable parameters. A basic scenario, from the efficiency traditional rates of in vivo (ET) and in vitro production (IVP) techniques of bovine embryos, was introduced in the software as a criterion to compare the results. This software was able to reproduce both ET and IVP scenarios. The embryo production was simulated through stochastic simulation. The optimal number of recipients using sensitivity analysis was determined. The net present value and cost per pregnancy were used as a decision parameter. The synchronization for fixed-time embryo transfer decreased the recipient idleness and, consequently, the final cost of pregnancy, in comparison to the traditional methodology. Foetal sexing must be associated to IVP of bovine embryos. In addition, the optimal recipient number per donor is variable and depends on data inserted in the system.
Resumo:
Desenvolveu-se um estudo de simulação estocástica com o objetivo de verificar as consequências do uso combinado de acasalamento dirigido e sêmen sexado em uma população de bovinos de corte sob seleção. Simularam-se seis gerações de seleção para três cenários de acasalamento e uso de sêmen sexado. O primeiro cenário foi caracterizado por acasalamento aleatório e uso exclusivo de sêmen convencional. O segundo cenário caracterizou-se pelo uso de acasalamento associativo positivo nas 40% melhores vacas e acasalamento associativo negativo nas demais, sem uso de sêmen sexado. O terceiro cenário seguiu o mesmo procedimento de acasalamento do segundo, combinando-o com uso de sêmen sexado nas vacas submetidas a acasalamento associativo positivo. O acasalamento associativo positivo teve maior impacto no progresso genético que o uso de sêmen sexado, apesar de ter aumentado a incidência de endogamia na população. O uso de acasalamento associativo negativo foi ineficiente em reduzir a variabilidade dos animais destinados ao abate. O uso combinado de acasalmento associativo positivo e sêmen sexado aumentou a produção de animais geneticamente superiores.
Resumo:
The objective of the present work is develop a model to simulate electrical energy networks in transient and stead states, using the software ATP (Alternative Transient Program), able to be a way to join two distinct themes, present in classical methodology planning networks: short circuit analysis and load flow theory. Beyond that, using a tool for relay simulation, this paper intend to use the new developed model to investigate the influence of transient phenomenon in operation of protection relays, and calibrate the enterprise's protections relays. For testing the model, some relays, actually, installed at COSERN were used
Resumo:
The main purpose of this work is to develop an environment that allows HYSYS R chemical process simulator communication with sensors and actuators from a Foundation Fieldbus industrial network. The environment is considered a hybrid resource since it has a real portion (industrial network) and a simulated one (process) with all measurement and control signals also real. It is possible to reproduce different industrial process dynamics without being required any physical network modification, enabling simulation of some situations that exist in a real industrial environment. This feature testifies the environment flexibility. In this work, a distillation column is simulated through HYSYS R with all its variables measured and controlled by Foundation Fieldbus devices
Resumo:
This dissertation describes the implementation of a WirelessHART networks simulation module for the Network Simulator 3, aiming for the acceptance of both on the present context of networks research and industry. For validating the module were imeplemented tests for attenuation, packet error rate, information transfer success rate and battery duration per station
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest
Resumo:
O experimento teve o objetivo de avaliar os efeitos da cobertura de palha e da simulação de chuva sobre a eficácia da mistura formulada clomazone + hexazinone no controle de plantas daninhas em área de cana-crua. Foi avaliado o controle de Brachiaria decumbens, Ipomoea grandifolia, Ipomoea hederifolia e Euphorbia heterophylla. A dose do herbicida utilizada foi de 2,2 kg ha-1 de produto comercial, correspondendo a 880 e 220 g ha-1 dos ingredientes ativos clomazone e hexazinone, respectivamente. Os tratamentos utilizados foram: T1) semeadura + palha 5 t ha-1 + aplicação + chuva de 30 mm (1DAA); T2) semeadura + chuva de 30 mm + palha 5 t ha-1 + aplicação; T3) semeadura + aplicação + palha 5 t ha-1 ; T4) semeadura + palha 5 t ha-1 + chuva de 30 mm + aplicação (12h após); T5) semeadura + palha 5 t ha-1 + aplicação + chuva de 2,5 mm (logo após); T6) semeadura + aplicação + chuva de 30 mm; T7) testemunha sem palha; e T8) testemunha com 5 t ha-1 de palha, totalizando oito tratamentos com quatro repetições, dispostos no delineamento experimental de blocos casualizados. Foram feitas avaliações visuais de controle aos 6, 13, 21, 27 e 35 dias após a aplicação (DAA). Para controle de B. decumbens, os melhores tratamentos foram aqueles nos quais o herbicida foi aplicado diretamente no solo, recebendo ou não uma camada de palha sobre o solo após a aplicação do herbicida, e quando foi aplicado sobre a camada de palha, recebendo uma chuva após a aplicação. Para a espécie E. heterophylla, os resultados foram bastante satisfatórios, proporcionando médias acima de 98% de controle, quando ocorreram precipitações posteriores à aplicação do herbicida. de modo geral, os tratamentos com a aplicação do herbicida, na ausência ou presença de palha, e posterior chuva apresentaram controle total da espécie I. hederifolia aos 35 DAA. Todos os tratamentos mostraram excelente controle para a espécie I. grandifolia.
Resumo:
The investigation of viability to use containers for Natural Gas Vehicle (NGV) storage, with different geometries of commercial standards, come from necessity to join the ambient, financial and technological benefits offered by the gas combustion, to the convenience of not modify the original proposal of the automobile. The use of these current cylindrical models for storage in the converted vehicles is justified by the excellent behavior that this geometry presents about the imposed tensions for the high pressure that the related reservoirs are submitted. However, recent research directed toward application of adsorbent materials in the natural gas reservoirs had proven a substantial redusction of pressure and, consequently, a relief of the tensions in the reservoirs. However, this study considers alternative geometries for NGV reservoirs, searching the minimization of dimensions and weight, remaining capacity to resist the tensions imposed by the new pressure situation. The proposed reservoirs parameters are calculated through a mathematical study of the internal pressure according to Brazilian standards (NBR) for pressure vessels. Finally simulations of the new geometries behavior are carried through using a commercially avaible Finite Element Method (FEM) software package ALGOR® to verify of the reservoirs efficincy under the gas pressure load
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works