992 resultados para sickle cell syndromes
Resumo:
Purpose of review Today the indication for allogeneic stem cell transplantation for a high-risk leukaemia in first remission is well defined by most centres. In patients with primary refractory leukaemia the indication is controversially discussed. Similarly patients with relapse and advanced disease have a poor prognosis with chemotherapy, but also with transplantation. Finally more elderly patients with comorbidities seek help from transplantation, most of them in advanced and otherwise refractory disease. The results are reviewed. Recent findings The role of alloimmunity in the control of leukaemia has been defined and pretransplant conditioning treatment could be reduced to less intensive protocols. Graft-versus-leukaemia reactions have been demonstrated with the transfusion of donor lymphocytes. Using nonmyeloablative regimens allogeneic stem cell transplantation could be offered to elderly patients, the majority of patients with acute myeloid leukaemia and myelodysplastic syndromes. The use of antibodies and radio-immunotherapy has improved the treatment of lymphoid malignancies. Cord blood transplants have shown improved results with double transplants. The superiority of maternal donors indicates a role of the donor`s immune repertoire. Summary Taking advantage of alloimmune reactions and reduced intensity conditioning allogeneic stem cell transplantation has become successful even in elderly and fragile patients. The combination of molecular monitoring, targeted therapy and transplantation as a form of immunotherapy may improve the results of leukaemia treatment further.
Resumo:
The molecular characterization of balanced chromosomal rearrangements have always been of advantage in identifying disease-causing genes. Here, we describe the breakpoint mapping of a de novo balanced translocation t(7;12)(q11.22;q14.2) in a patient presenting with a failure to thrive associated with moderate mental retardation, facial anomalies, and chronic constipation. The localization of the breakpoints and the co-occurrence of Williams-Beuren syndrome and 12q14 microdeletion syndrome phenotypes suggested that the expression of some of the dosage-sensitive genes of these two segmental aneuploidies were modified in cells of the proposita. However, we were unable to identify chromosomes 7 and/or 12-mapping genes that showed disturbed expression in the lymphoblastoids of the proposita. This case showed that position-effect might operate in some tissues, but not in others. It also illustrates the overlap of phenotypes presented by patients with the recently described 12q14 structural rearrangements.
Resumo:
TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P< .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P< .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P< .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.
Resumo:
AGAT and GAMT, the two enzymes of the creatine synthesis pathway, are well expressed within CNS, suggesting autonomous brain creatine synthesis. This contradicts SLC6A8 deficiency, which causes creatine deficiency despite CNS expression of AGAT and GAMT. We hypothesized that AGAT and GAMT were not co-expressed by brain cells, and that guanidinoacetate must be transported between cells to allow creatine synthesis. We finely analyzed the cell-to-cell co-expression of AGAT, GAMT and SLC6A8 in various regions of rat CNS, and showed that in most structures, cells co-expressing AGAT+GAMT (equipped for autonomous creatine synthesis) were in low proportions (<20%). Using reaggregating brain cell cultures, we also showed that brain cells take up guanidinoacetate and convert it to creatine. Guanidinoacetate uptake was competed by creatine. This suggests that in most brain regions, guanidinoacetate is transported from AGAT- to GAMT-expressing cells through SLC6A8 to allow creatine synthesis, thereby explaining creatine deficiency in SLC6A8-deficient CNS.
Resumo:
Lymphomas represent a wide group of heterogenic diseases with different biological and clinical behavior. The underlying microenvironment-specific composition seems to play an essential role in this scenario, harboring the ability to develop successful immune responses or, on the contrary, leading to immune evasion and even promotion of tumor growth. Depending on surrounding lymphoid infiltrates, lymphomas may have different prognosis. Moreover, recent evidences have emerged that confer a significant impact of main lymphoma's treatment over microenvironment, with clinical consequences. In this review, we summarize these concepts from a pathological and clinical perspective. Also, the state of the art of lymphoma's anti-idiotype vaccine development is revised, highlighting the situations where this strategy has proven to be successful and eventual clues to obtain better results in the future.
Resumo:
Brain inflammatory response is triggered by the activation of microglial cells and astrocytes in response to various types of CNS injury, including neurotoxic insults. Its outcome is determined by cellular interactions, inflammatory mediators, as well as trophic and/or cytotoxic signals, and depends on many additional factors such as the intensity and duration of the insult, the extent of both the primary neuronal damage and glial reactivity and the developmental stage of the brain. Depending on particular circumstances, the brain inflammatory response can promote neuroprotection, regeneration or neurodegeneration. Glial reactivity, regarded as the central phenomenon of brain inflammation, has also been used as an early marker of neurotoxicity. To study the mechanisms underlying the glial reactivity, serum-free aggregating brain cell cultures were used as an in vitro model to test the effects of conventional neurotoxicants such as organophosphate pesticides, heavy metals, excitotoxins and mycotoxins. This approach was found to be relevant and justified by the complex cell-cell interactions involved in the brain inflammatory response, the variability of the glial reactions and the multitude of mediators involved. All these variables need to be considered for the elucidation of the specific cellular and molecular reactions and their consequences caused by a given chemical insult.
Resumo:
OBJECTIVES: To investigate prevalence of transmitted drug-resistant human immunodeficiency virus (TDR) and factors associated with TDR and to compare virological and CD4 count response to combination antiretroviral therapy. METHODS: In this study, 525 mostly chronically infected EuroSIDA patients were included who had genotypic resistance tests performed on plasma samples collected while antiretroviral therapy naive. TDR was defined as at least one resistance mutation from a list proposed for genotypic TDR surveillance. Multivariable logistic regression was used to analyze factors associated with detection of TDR, with virological (viral load<500 copies/mL) and CD4 count response (>or=50% increase) to combination antiretroviral therapy at months 6-12. RESULTS: The overall prevalence of TDR was 11.4%, which was stable over 1996-2004. There were no significant differences in virological suppression (those resistant to at least one drug prescribed versus susceptible), adjusted odds ratio: 0.68 (95% confidence interval: 0.27 to 1.71; P=0.408) or CD4 count response, adjusted odds ratio: 1.65 (95% confidence interval: 0.73 to 3.73; P=0.231). CONCLUSIONS: Prevalence of TDR in antiretroviral-naive patients was found to be in line with other European studies. No significant differences were found in virological and CD4 count response after initiation of first-line combination antiretroviral therapy between resistant and susceptible patients, possibly due to the small number of patients with resistance and consequently low power.
Resumo:
CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.
Resumo:
Creatine deficiency syndromes, due to deficiencies in AGAT, GAMT (creatine synthesis pathway) or SLC6A8 (creatine transporter), lead to complete absence or very strong decrease of creatine in CNS as measured by magnetic resonance spectroscopy. Brain is the main organ affected in creatine-deficient patients, who show severe neurodevelopmental delay and present neurological symptoms in early infancy. AGAT- and GAMT-deficient patients can be treated by oral creatine supplementation which improves their neurological status, while this treatment is inefficient on SLC6A8-deficient patients. While it has long been thought that most, if not all, of brain creatine was of peripheral origin, the past years have brought evidence that creatine can cross blood-brain barrier, however, only with poor efficiency, and that CNS must ensure parts of its creatine needs by its own endogenous synthesis. Moreover, we showed very recently that in many brain structures, including cortex and basal ganglia, AGAT and GAMT, while found in every brain cell types, are not co-expressed but are rather expressed in a dissociated way. This suggests that to allow creatine synthesis in these structures, guanidinoacetate must be transported from AGAT- to GAMT-expressing cells, most probably through SLC6A8. This new understanding of creatine metabolism and transport in CNS will not only allow a better comprehension of brain consequences of creatine deficiency syndromes, but will also contribute to better decipher creatine roles in CNS, not only in energy as ATP regeneration and buffering, but also in its recently suggested functions as neurotransmitter or osmolyte.
Resumo:
The telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals. In this review, we describe results of recent flow FISH studies in patients with selected hematopoietic stem cell-associated disorders: chronic myelogenous leukemia (CML) and several bone marrow failure syndromes. CML is characterized by a marked expansion of myeloid Philadelphia chromosome positive (Ph+) cells. Nevertheless, nonmalignant (Ph-) HSCs typically coexist in the bone marrow of CML patients. We analyzed the telomere length in > 150 peripheral blood leukocytes (PBLs) and bone marrow samples of patients with CML as well as samples of Ph- T-lymphocytes. Compared to normal controls, the overall telomere fluorescence in PBLs of patients with CML was significantly reduced. However, no telomere shortening was observed in Ph- T-lymphocytes. Patients in late chronic phase (CP) had significantly shorter telomeres than those assessed earlier in CP. Our data suggest that progressive telomere shortening is correlated with disease progression in CML. Within the group of patients with bone marrow failure syndromes, we only found significantly shortened telomeres (compared to age-adjusted controls) in granulocytes from patients with aplastic anemia (AA). Strikingly, the telomere length in granulocytes from AA patients who had recovered after immunosuppressive therapy (recAA) did not differ significantly from controls, whereas untreated patients and nonresponders with persistent severe pancytopenia (sAANR) showed marked and significant telomere shortening compared to healthy donors and patients with recAA. Furthermore, an inverse correlation between age-adjusted telomere length and peripheral blood counts was found in support of a model in which the degree of cytopenia and the amount of telomere shortening are correlated. These results support the concept of extensive proliferation of HSCs in subgroups of AA patients and suggest a potential use of telomere-length measurements as a prognostic tool in this group of disorders as well.
Resumo:
Among cerebral creatine deficiency syndromes, guanidinoacetate methyltransferase (GAMT) deficiency can present the most severe symptoms, and is characterized by neurocognitive dysfunction due to creatine deficiency and accumulation of guanidinoacetate in the brain. So far, every patient was found with negligible GAMT activity. However, GAMT deficiency is thought under-diagnosed, in particular due to unforeseen mutations allowing sufficient residual activity avoiding creatine deficiency, but enough guanidinoacetate accumulation to be toxic. With poorly known GAA-specific neuropathological mechanisms, we developed an RNAi-induced partial GAMT deficiency in organotypic rat brain cell cultures. As expected, the 85% decrease of GAMT protein was insufficient to cause creatine deficiency, but generated guanidinoacetate accumulation causing axonal hypersprouting and decrease in natural apoptosis, followed by induction of non-apoptotic cell death. Specific guanidinoacetate-induced effects were completely prevented by creatine co-treatment. We show that guanidinoacetate accumulation without creatine deficiency is sufficient to affect CNS development, and suggest that additional partial GAMT deficiencies, which may not show the classical brain creatine deficiency, may be discovered through guanidinoacetate measurement.
Resumo:
Les syndromes de déficiences cérébrales en créatine (CCDS) sont dus à des mutations dans les gènes GATM et G AMT (codant pour les enzymes AGAT et G AMT de la voie de synthèse de créatine) ainsi que SLC6A8 (transporteur de créatine), et génèrent une absence ou une très forte baisse de créatine (Cr) dans le cerveau, mesurée par spectroscopic de résonance magnétique. Les patients CCDS développent des handicaps neurologiques sévères. Les patients AGAT et GAMT peuvent être traités avec des doses importantes de Cr, mais gardent dans la plupart des cas des séquelles neurologiques irréversibles. Aucun traitement efficace n'existe à ce jour pour la déficience en SLC6A8. Bien que de nombreux modèles aient été développés pour comprendre la Cr cérébrale en conditions physiologiques, les pathomécanismes des CCDS ne sont pas encore compris. Des souris transgéniques pour les gènes Gatm, Gamt et Slc6a8 ont été générées, mais elles ne miment que partiellement la pathologie humaine. Parmi les CCDS, la déficience en GAMT est la plus sévère, en raison de l'accumulation cérébrale de l'intermédiaire guanidinoacétate (GAA). Alors que la toxicité cérébrale du GAA a été étudiée par exposition directe au GAA d'animaux adultes sains, les mécanismes de la toxicité du GAA en condition de déficience en GAMT dans le cerveau en développement sont encore inconnus. Le but de ce projet était donc de développer un modèle de déficience en GAMT dans des cultures 3D primaires de cellules nerveuses de rat en agrégats par knock-down du gène GAMT, en utilisant un virus adéno-associé (AAV) induisant le mécanisme d'interférence à l'ARN (RNAi). Le virus scAAV2, à la multiplicité d'infection de 1000, s'est révélé le plus efficace pour transduire tous les types de cellules nerveuses des cultures (neurones, astrocytes, oligodendrocytes), et générer un knock-down maximal de la protéine GAMT de 85% (jour in vitro 18). Cette déficience partielle en GAMT s'est révélée insuffisante pour générer une déficience en Cr, mais a causé l'accumulation attendue de GAA, à des doses comparables aux niveaux observés dans le LCR des patients GAMT. Le GAA a induit une croissance axonale anarchique accompagnée d'une baisse de l'apoptose naturelle, suivis par une induction tardive de mort cellulaire non-apoptotique. Le co-traitement par la Cr a prévenu tous les effets toxiques du GAA. Ce travail montre que l'accumulation de GAA en absence de déficience en Cr est suffisante pour affecter le développement du tissu nerveux, et suggère que des formes de déficiences en GAMT supplémentaires, ne présentant pas de déficiences en Cr, pourraient être découvertes par mesure du GAA, en particulier à travers les programmes récemment proposés de dépistage néonatal de la déficience en GAMT. -- Cerebral creatine deficiency syndromes (CCDS) are caused by mutations in the genes GATM and GAMT (respectively coding for the two enzymes of the creatine synthetic pathway, AGAT and GAMT) as well as SLC6A8 (creatine transporter), and lead to the absence or very strong decrease of creatine (Cr) in the brain when measured by magnetic resonance spectroscopy. Affected patients show severe neurological impairments. While AGAT and GAMT deficient patients can be treated with high dosages of Cr, most remain with irreversible brain sequelae. No treatment has been successful so far for SLC6A8 deficiency. While many models have helped understanding the cerebral Cr pathways in physiological conditions, the pathomechanisms underlying CCDS are yet to be elucidated. Transgenic mice carrying mutations in the Gatm, Gamt and Slc6a8 genes have been developed, but only partially mimic the human pathology. Among CCDS, GAMT deficiency is the most severe, due to the CNS accumulation of the guanidinoacetate (GAA) intermediate. While brain toxicity of GAA has been explored through direct GAA exposure of adult healthy animals, the mechanisms underlying GAA toxicity in GAMT deficiency conditions on the developing CNS are yet unknown. The aim of this project was thus to develop and characterize a GAMT deficiency model in developing brain cells by gene knockdown, by adeno-associated virus (AAV)-driven RNA interference (RNAi) in rat 3D organotypic primary brain cell cultures in aggregates. scAAV2 with a multiplicity of infection of 1000 was shown as the most efficient serotype, was able to transduce all brain cell types (neurons, astrocytes, oligodendrocytes) and to induce a maximal GAMT protein knockdown of 85% (day in vitro 18). Metabolite analysis showed that partial GAMT knockdown was insufficient to induce Cr deficiency but generated the awaited GAA accumulation at concentrations comparable to the levels observed in cerebrospinal fluid of GAMT-deficient patients. Accumulated GAA induced axonal hypersprouting paralleled with inhibition of natural apoptosis, followed by a later induction in non-apoptotic cell death. Cr supplementation led to the prevention of all GAA-induced toxic effects. This work shows that GAA accumulation without Cr deficiency is sufficient to affect CNS development, and suggests that additional partial GAMT deficiencies, which may not show the classical brain Cr deficiency, may be discovered through GAA measurement including by recently proposed neonatal screening programs for GAMT deficiency.
Resumo:
Le virus Epstein-Barr (VEB) est fortement associé au développement de syndromes lymphoprolifératifs (SLP) en greffe pédiatrique. Ce virus a la capacité d’immortaliser les lymphocytes B et de provoquer leur prolifération incontrôlée chez l’hôte immunodéprimé. Plusieurs études démontrent que le cycle lytique du virus jouerait un rôle primordial dans la genèse des SLP en produisant des particules virales pouvant infecter les cellules B adjacentes. Chez un individu immunodéprimé, ces cellules B nouvellement infectées peuvent donner naissance à une expansion lymphocytaire. Le projet présenté dans ce mémoire fait partie d’un programme de recherche visant à élucider le rôle de l’infection productive par le VEB dans le développement des SLP. L’objectif précis de ce projet est de développer un anticorps monoclonal chimère contre la glycoprotéine gp350 du VEB dans le but de neutraliser le virus et d’ainsi prévenir son entrée dans les cellules B. Notre laboratoire a construit une version chimère de l’anticorps monoclonal murin 72A1, lequel se lie à la gp350 et bloque l’infection. Les premiers essais ont révélé la présence de chaînes non fonctionnelles (aberrantes) dans l’hybridome produisant l’anticorps 72A1. La construction de la chaîne légère authentique est maintenant complète alors que celle de la chaîne lourde est toujours en cours. Le processus de caractérisation de l’anticorps chimère inclura des essais de cytotoxicité à médiation cellulaire dépendante des anticorps (ADCC). Dans cette optique, une lignée cellulaire exprimant de façon stable la gp350 a été établie. Notre anticorps chimère anti-gp350 pourrait éventuellement être utilisé comme thérapie préventive chez les greffés présentant un risque élevé de SLP en empêchant l’infection des cellules B adjacentes.
Resumo:
Since dwarf napiergrass (Pennisetum purpureum Schumach.) must be propagated vegetatively due to lack of viable seeds, root splitting and stem cuttings are generally used to obtain true-to-type plant populations. These ordinary methods are laborious and costly, and are the greatest barriers for expanding the cultivation area of this crop. The objectives of this research were to develop nursery production of dwarf napiergrass in cell trays and to compare the efficiency of mechanical versus manual methods for cell-tray propagation and field transplanting. After defoliation of herbage either by a sickle (manually) or hand-mowing machine, every potential aerial tiller bud was cut to a single one for transplanting into cell trays as stem cuttings and placed in a glasshouse over winter. The following June, nursery plants were trimmed to a 25–cm length and transplanted in an experimental field (sandy soil) with 20,000 plants ha^(−1) either by shovel (manually) or Welsh onion planter. Labour time was recorded for each process. The manual defoliation of plants required 44% more labour time for preparing the stem cuttings (0.73 person-min. stemcutting^(−1)) compared to using hand-mowing machinery (0.51 person-min. stem-cutting^(−1)). In contrast, labour time for transplanting required an extra 0.30 person-min. m^(−2) (14%) using the machinery compared to manual transplanting, possibly due to the limited plot size for machinery operation. The transplanting method had no significant effect on plant establishment or plant growth, except for herbage yield 110 days after planting. Defoliation of herbage by machinery, production using a cell-tray nursery and mechanical transplanting reduced the labour intensity of dwarf napiergrass propagation.