961 resultados para scanning microscopy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To visualize Ca2+-dependent protein–protein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named “pericam,” was fluorescent and its spectral properties changed reversibly with the amount of Ca2+, probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, “flash-pericam” became brighter with Ca2+, whereas “inverse-pericam” dimmed. On the other hand, “ratiometric-pericam” had an excitation wavelength changing in a Ca2+-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca2+ dynamics, such as Ca2+ oscillations in the cytosol and the nucleus. Ca2+ imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca2+ ions across the nuclear envelope. Then, free Ca2+ concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca2+ transients caused rapid changes in the concentration of mitochondrial Ca2+. Finally, a “split-pericam” was made by deleting the linker in the flash-pericam. The Ca2+-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potato virus X (PVX) is a filamentous plant virus infecting many members of the family Solanaceae. A modified form of PVX, PVX.GFP-CP which expressed a chimeric gene encoding a fusion between the 27-kDa Aequorea victoria green fluorescent protein and the amino terminus of the 25-kDa PVX coat protein, assembled into virions and moved both locally and systemically. The PVX.GFP-CP virions were over twice the diameter of wild-type PVX virions. Assembly of PVX.GFP-CP virions required the presence of free coat protein subunits in addition to the fusion protein subunits. PVX.GFP-CP virions accumulated as paracrystalline arrays in infected cells similar to those seen in cells infected with wild-type PVX The formation of virions carrying large superficial fusions illustrates a novel approach for production of high levels of foreign proteins in plants. Aggregates of PVX.GFP-CP particles were fluorescent, emitting green light when excited with ultraviolet light and could be imaged using confocal laser scanning microscopy. The detection of virus particles in infected tissue demonstrates the potential of fusions between the green fluorescent protein and virus coat protein for the non-invasive study of virus multiplication and spread.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the rat glucocorticoid receptor (GR). When GFP-GR is expressed in living mouse cells, it is competent for normal transactivation of the GR-responsive mouse mammary tumor virus promoter. The unliganded GFP-GR resides in the cytoplasm and translocates to the nucleus in a hormone-dependent manner with ligand specificity similar to that of the native GR receptor. Due to the resistance of the mutant GFP to photobleaching, the translocation process can be studied by time-lapse video microscopy. Confocal laser scanning microscopy showed nuclear accumulation in a discrete series of foci, excluding nucleoli. Complete receptor translocation is induced with RU486 (a ligand with little agonist activity), although concentration into nuclear foci is not observed. This reproducible pattern of transactivation-competent GR reveals a previously undescribed intranuclear architecture of GR target sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blastocyst-derived pluripotent mouse embryonic stem cells can differentiate in vitro to form so-called embryoid bodies (EBs), which recapitulate several aspects of murine embryogenesis. We used this in vitro model to study oxygen supply and consumption as well as the response to reduced oxygenation during the earliest stages of development. EBs were found to grow equally well when cultured at 20% (normoxia) or 1% (hypoxia) oxygen during the first 5 days of differentiation. Microelectrode measurements of pericellular oxygen tension within 13- to 14-day-old EBs (diameter 510-890 micron) done at 20% oxygen revealed efficient oxygenation of the EBs' core region. Confocal laser scanning microscopy analysis of EBs incubated with fluorescent dyes that specifically stain living cells confirmed that the cells within an EB were viable. To determine the EBs' capability to sense low oxygen tension and to specifically respond to low ambient oxygen by modulating gene expression we quantified aldolase A and vascular endothelial growth factor (VEGF) mRNAs, since expression of these genes is upregulated by hypoxia in a variety of cells. Compared with the normoxic controls, we found increased aldolase A and VEGF mRNA levels after exposing 8- to 9-day-old EBs to 1% oxygen. We propose that EBs represent a powerful tool to study oxygen-regulated gene expression during the early steps of embryogenesis, where the preimplantation conceptus resides in a fluid environment with low oxygen tension until implantation and vascularization allow efficient oxygenation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age-associated memory impairment occurs frequently in primates. Based on the established importance of both the perforant path and N-methyl-D-aspartate (NMDA) receptors in memory formation, we investigated the glutamate receptor distribution and immunofluorescence intensity within the dentate gyrus of juvenile, adult, and aged macaque monkeys with the combined use of subunit-specific antibodies and quantitative confocal laser scanning microscopy. Here we demonstrate that aged monkeys, compared to adult monkeys, exhibit a 30.6% decrease in the ratio of NMDA receptor subunit 1 (NMDAR1) immunofluorescence intensity within the distal dendrites of the dentate gyrus granule cells, which receive the perforant path input from the entorhinal cortex, relative to the proximal dendrites, which receive an intrinsic excitatory input from the dentate hilus. The intradendritic alteration in NMDAR1 immunofluorescence occurs without a similar alteration of non-NMDA receptor subunits. Further analyses using synaptophysin as a reflection of total synaptic density and microtubule-associated protein 2 as a dendritic structural marker demonstrated no significant difference in staining intensity or area across the molecular layer in aged animals compared to the younger animals. These findings suggest that, in aged monkeys, a circuit-specific alteration in the intradendritic concentration of NMDAR1 occurs without concomitant gross structural changes in dendritic morphology or a significant change in the total synaptic density across the molecular layer. This alteration in the NMDA receptor-mediated input to the hippocampus from the entorhinal cortex may represent a molecular/cellular substrate for age-associated memory impairments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal and spatial changes in the intracellular Ca2+ concentration ([Ca2+]i) were examined in dendrites and somata of rat cerebellar Purkinje neurons by combining whole-cell patch-clamp recording and fast confocal laser-scanning microscopy. In cells loaded via the patch pipette with the high-affinity Ca2+ indicator Calcium Green-1 (Kd approximately 220 nM), a single synaptic climbing fiber response, a so-called complex spike, resulted in a transient elevation of [Ca2+]i that showed distinct differences among various subcellular compartments. With conventional imaging, the Ca2+ signals were prominent in the dendrites and almost absent in the soma. Confocal recordings from the somatic region, however, revealed steep transient increases in [Ca2+]i that were confined to a submembrane shell of 2- to 3-microns thickness. In the central parts of the soma [Ca2+]i increases were much slower and had smaller amplitudes. The kinetics and amplitudes of the changes in [Ca2+]i were analyzed in more detail by using the fast, low-affinity Ca2+ indicator Calcium Green-5N (Kd approximately 17 microM). We found that brief depolarizing pulses produced [Ca2+]i increases in a narrow somatic submembrane shell that resembled those seen in the dendrites. These results provide direct experimental evidence that the surface-to-volume ratio is a critical determinant of the spatiotemporal pattern of Ca2+ signals evoked by synaptic activity in neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Of fundamental importance in understanding neuronal function is the unambiguous determination of the smallest unit of neuronal integration. It was recently suggested that a whole dendritic branchlet, including tens of spines, acts as the fundamental unit in terms of dendritic calcium dynamics in Purkinje cells. By contrast, we demonstrate that the smallest such unit is the single spine. The results show, by two-photon excited fluorescence laser scanning microscopy, that individual spines are capable of independent calcium activation. Moreover, two distinct spine populations were distinguished by their opposite response to membrane hyperpolarization. Indeed, in a subpopulation of spines calcium entry can also occur through a pathway other than voltage-gated channels. These findings challenge the assumption of a unique parallel fiber activation mode and prompt a reevaluation of the level of functional complexity ascribed to single neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was undertaken to identify proteins interacting with PrPC that could provide new insights into its physiological functions and pathological role. We performed a target search for lysosomal network protein, Rab7a and Rab9, in frontal cortex and cerebellum of human brain from patients with sCJD-MM1 and sCJD-VV2. The intracellular level of Rab7a was increased significantly, when compared with healthy age-matched control. Interactions of PrPC and Rab7a/Rab9 were further investigated by using confocal laser scanning microscopy. Immunofluorescence results suggested potential interactions of Rab7a and PrPC. siRNA against the Rab7a gene was used to knockdown the expression of Rab7a protein in primary cell culture of cortical neurons from wild type mice. This depleted Rab7a resulted an impairment of PrPC trafficking leading to an accumulation of PrPC in the endocytosis pathway. Furthermore, interactions of Tau and Rab7a were investigated by using western blot analysis and confocal laser scanning microscopy. Cell cultures of cortex of wildtype mice were treated with siRNA-Tau, siRNA-Rab7 and control siRNA followed by immunofluorescence. The results of immunofluorescence suggested potential interaction of Tau and Rab7a. Cells lines treated with siRNA-Tau, the intracellular levels of Rab7a and Rab9 significantly increases and their localization is also modified. When we transfected this cells lines with siRNA-rab7a the accumulation of Tau decreases in cytosolic region and their localization was also modified when compared with control cells. In conclusion, this study may help to understand and characterize the subtype specific disease progression in CJD cases. Furthermore, it could be a step ahead to development of new treatment strategies for diseases subtype specific manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postharvest treatments with nano-silver (NS) alleviate bacteria-related stem blockage of some cut flowers to extend their longevity. Gladiolus (Gladiolus hybridus) is a commercially important cut flower species. For the first time, the effects of NS pulses on cut gladiolus ‘Eerde’ spikes were investigated towards reducing bacterial colonization of and biofilm formation on their stems. As compared with a deionized water (DIW) control, pulse treatments with NS at 10, 25 and 50 mg L−1 for 24 h significantly (P ≤ 0.05) prolonged the vase life of cut gladiolus spikes moved into vases containing DIW. The NS treatments enhanced floret ‘opening rate’ and ‘daily ornamental value’. Although there were no significant differences among NS treatments, a 25 mg L−1 NS pulse treatment tended to give the longest vase life and the best ‘display quality’. All NS pulse treatments significantly improved water uptake by and reduced water loss from flowering spikes, thereby delaying the loss of water balance and maintaining relative fresh weight. Fifty (50) mg L−1 NS pulse-treated cut gladiolus spikes tended to exhibit the most water uptake and highest water balance over the vase period. However, there was no significant difference between 25 and 50 mg L−1 NS pulse treatments. Observations of stem-end bacterial proliferation during the vase period on cut gladiolus spikes either with or without NS pulse treatments were performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As compared to the control treatment, they revealed that the 25 mg L−1 NS pulse treatment effectively inhibited bacterial colonization and biofilm formation on the stem-end cut surface and in the xylem vessels, respectively. In vitro culture of the bacterial microflora and analysis of biofilm architecture using CLSM revealed that NS treatment restricted bacterial biofilm formation. After static culture for 24 h at 35 °C with 25 mg L−1 NS in the medium, no biofilm form or structure was evident. Rather, only limited bacterial cell number and scanty extracellular polysaccharide (EPS) material were observed. In contrast, mature bacterial biofilm architecture comprised of abundant bacteria interwoven with EPS formed in the absence of NS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na fabricação de componentes mecânicos precisos, que necessitam de alta resistência mecânica e ao desgaste, utiliza-se o processo de retificação, para conferir o acabamento final desejado e, também, para eliminar as deformações ocorridas durante a têmpera do aço. No entanto, as condições de retificação devem ser adequadas, para que não sejam introduzidas falhas na peça. Novos conceitos de lubrificação e refrigeração, para o processo de retificação, estão sendo pesquisados, de forma a diminuir os custos e os danos ambientais causados pelos fluidos de corte. Nesse trabalho, é analisada a influência das técnicas de mínima quantidade de lubrificante (MQL), refrigeração otimizada e refrigeração convencional, com diferentes vazões e velocidade de aplicação do fluido de corte, na qualidade das peças produzidas com aço ABNT 4340 endurecido, no processo de retificação cilíndrica externa de mergulho com a utilização de rebolos de CBN. O Aço ABNT 4340 apresenta várias aplicações industriais, sendo considerado de uso aeronáutico devido, sua alta resistência mecânica sem aumentar o peso dos componentes que o utilizam. A análise da qualidade das peças foi realizada com a verficação das rugosidades e com a análise de microscopias eletrônicas de varredura. Verificou-se, ainda, a força tangencial de corte. em relação às diferentes formas de aplicação do fluido de corte, notou-se o melhor desempenho da aplicação otimizada, para maiores velocidades, mostrando a eficiência do bocal utilizado. O processo otimizado e o processo MQL foram capazes de manter a integridade superficial das peças produzidas. Exceção somente para a condição MQL com vazão de fluido de corte de 40ml/h, que produziu trincas e queima superficial. Rebolos com baixa concentração de CBN, conseqüentemente mais baratos, proporcionaram bons resultados, quando associados com técnicas mais eficientes de aplicação de fluido de corte apresentando desgaste reduzido.