955 resultados para sandstone reservoir


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower member of the lower Ganchaigou Formation in the southwestern of Qaidam Basin is one of the main targeted exploration zones. With the advancement of exploration, the targets are gradually switching into the lithologic reservoirs and it is urgent to gain the more precise research results in distribution of sedimentary facies and sandstones. Guided by the theory of sequence stratigraphy and sedimentology as well as on the basis of many logging data, drillings, seismic data and chemical tests, the paper comprehensively analyzes the sedimentary facies and sandstones in the lower member of lower Ganchaigou Formation in the southern of Chaixi. According to the identification marks of the key interface in sequence stratigraphy, the key interfaces in lower member of lower Ganchaigou Formation in the southwestern of Qaidam Basin are identified as two third-order sequences SQ1、SQ2. By calibrating the synthetic seismogram, the seismic sequence, well drilling and logging sequences are united. Based on the works above, this paper chooses seven primary cross-sections and builds connecting-well stratigraphic correlation of seven main connecting-well sections. Ultimately, the high-resolution sequence stratigraphic frameworks in the lower member of the lower Ganchaigou Formation, which are uniform to logging and seismic data, are figured out. In terms of study on each sequence features, the main style of the base-level cycle overlay which forms the third-order sequence is confirmed. It contains asymmetric “becoming deep upward” style and symmetry style. Researching on the spreading characters of sequence stratigraphy indicates that SQ1 and SQ2 are rather thicker near northwest well Shashen 20 and Shaxin1 while they are quite thiner near Hongcan 1, Yuejin, Qie 4 and Dong8-Wu3, and the thickness of SQ1 is thicker than SQ2.Based on the deep analysis of the marks for depositional facies, it is proposed that the lake facies and braid river deltas facies mainly occurred in study areas. Besides, the sorts of sub-facies and micro-facies model are divided and described. Under the control of high-resolution sequence stratigraphic framework, three source directions from Arlarer Mountain、Qimantage Mountain and Dongchai Mountain are identified by using the features of heavy mineral assemblage and paleogeomorphy. In addition, regularities of distribution sedimentary facies in sequence stratigraphic framework are studied in accordance with research thinking of the "point" (single well) "line" (section) "face" (plane). In the stage of lower member in the lower Ganchaigou Formation in the southwestern of Qaidam Basin, it is at the early phrase of evolution of the lake basin with the gradual outspread and the rise of the lake level. Combined with physical analysis of reservoir sands formed in different sedimentary environment, the paper studies the style of favorable sandstone bodies that are underwater distributary channel of braided rive delta front, coarse sand in mouth bar and the sand body in sand flat of shore-shallow lacustrine facies. Finally, this article comprehensively analyzes the distribution relationship between sedimentary facies and favorable sandstone body and proposes the ideas that sequence SQ1 Yuejin area, well east 8-wu3 area, well qie4-qie1 area and well hongcan2 area are distributed areas of favorable sandstone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reservoir characterization and reservoir modeling are two key techniques in petroleum exploration and development. They all are based on the reliable static and dynamic properties of the reservoirs, especially the static and dynamic properties of the reservoirs at each borehole. Without the static and dynamic properties of the reservoir, reservoir characterization and reservoir modeling will pass into nothingness. In fact, the static and dynamic properties of the reservoir are needed in every domain and stage of petroleum exploration & development Today, petroleum industry has reached a stage worldwide that most of the simple & large massive reservoirs have been well explored and developed. As a result, oil companies are paying more and more attention to the exploration & development of the complex & middle to small clastic reservoirs (such as low resistivity sandstone reservoirs, low or no resistivity contrast sandstone reservoirs, conglomerate reservoirs, volcanoclastic reservoirs). In the recent years, oil companies inside and outside China are focusing on the exploration and development elastic reservoirs. Most of the theories & methods being applicable for simple clastic reservoirs can not be used in complex clasic reservoirs. Some theories & methods that are not resolved in the case of simple clasic reservoirs become more impossible to be resolved in the case of complex elastic reservoirs. A set of theories & methods being applicable for computing the static and dynamic properties of the complex elastic reservoirs are developed in this paper and they have been put into practice successfully. These theories & methods are developed by integrating multi-subjects such as geology, well logging and reservoir engineering, in which geology is used as direction and modern well logging technology is used as basis and reservoir engineering is used as assistance and computer technology is used as tool. There are three outstanding breakthroughs in this paper: of the low porosity fractured and/or vuggy carbonate/igneous reservoirs too. A set of practical theories and methods of computing the static properties (such as porosity, saturation, lithology and fluid type) & dynamic properties (such as permeability and production rate) of simple clastic reservoirs have been developed with the hard efforts of many petroleum engineers and scientists in the past 70 years. However, only some of the theories & methods being applicable for simple clastic reservoirs can be used in complex clastic reservoirs after little modification because of the complexity of the complex clastic reservoirs. Most of the theories & methods being applicable for simple clastic reservoirs can not be used in complex clasic reservoirs. Some theories & methods that are not resolved in the case of simple clasic reservoirs become more impossible to be resolved in the case of complex clastic reservoirs. A set of theories & methods being applicable for computing the static and dynamic properties of the complex clastic reservoirs are developed in this paper and they have been put into practice successfully. These theories & methods are developed by integrating multi-subjects such as geology, well logging and reservoir engineering, in which geology is used as direction and modern well logging technology is used as basis and reservoir engineering is used as assistance and computer technology is used as tool. There are three outstanding breakthroughs in this paper:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the principle and method of sequence, the author describes the sequence-filling model of the rifting basin of Xujiaweizi and its gas exploration potential. The object of this paper belongs to the area around Shengping-Wangjiatun anticline. Its srtatigraphy includes Huoshiling Formation (neutral and basic volcanic rocks), Shahezi Formation (coal bedding and mud and some sandstone) and Yingcheng Formation from bottom to top. These stratigraphy units are defined by author as mesosequences respectively. The author emphasizes that the main control factors of sequence change with the types of basin and stage of basin. So the sequence is researched according to the types of basin. This viewpoint is very new, and it is consistent with the principle of sequence. Volcanic action is very frequent and acute, topography difference is obvious. Between the volcanic events, Shahezi Formation is formed, which mainly consists-of sedimentary rocks. Based on the datum from seismic section and drilling core and well-logging, the author analyzes the single unit and unit set and system tract and sedimentary fancies, then, according to the accommodation space change and marking of sequence boundary, Shahezi Formation is divided into two Third-scale sequences. The sedimentary fancies and depth distribution are described. The author also pointed out that the volcanic rocks consume the accommodation space, so volcanic rocks can influence the development of sequence. Based on the concept of accommodation space, the author put volcanic rocks into sequence frame, which normally consists of sedimentary rocks. The topography of volcanic is controlled by lithology of volcanic rocks, the pattern of volcanic eruption and the topography before volcanic eruption. The topography of volcanic can influence sedimentation and the filling pattern of sedimentary rocks. The author describes the composition and lithology fancies and depth distribution of volcanic rocks. The volcanic rocks and Volcanic building, volcanic structure is recognized on seismic section. The author paid a special attention to the relationship between sedimentation and volcanism. Finally, the author analyses the combination of source-reservoir-cover unit in sequence frame. The mudstone of Shahezi Formation has a great depth, the Kerogene in it belongs to type II and III, which tends to produce gas. The Yingcheng Formation lies between Shahezi Formation and Denglouku Formation, belonging to good reservoir. The volcanic rocks of Huoshiling Formation often formed high building, which can capture the gas produced from Shahezi Formation. The stratigraphy of rifting basin of Xujiaweizi has the great potential of gas exploration. This paper claims the following creative points: 1. The author applied the principle and method of sequence to rifting basin, greatly extending its research area and topic issues. 2. The author pointed out that basin of different type and of different stage has a different type of sequence. This is caused by the different main control factors of sequence. 3. Put volcanic rocks into the sequence frame, discussing the probability of regarding the volcanic rocks as the component of sequence, dealing with the relationship between sedimentation and volcanism and its influence to the source-reservoir-cover system. 4. The author pointed out that the filling pattern of rifting basin are determined by the filling pattern of megasequence, whose filling pattern is determined by the filling pattern of system tract and the change of accommodation space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on achievements of thirty years of hydrocarbon exploration, this paper uses the modern theories and methods of sedimentology and oil accumulation to study the origin and distribution features of four sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia from the third member to the lower second member of Shahejie Formation in detail. Various geophysical methods are also used to explain and to predict the spatial distribution of sandbodies, which further shows mechanism and the model of oil accumulation and illuminates the disciplinarians of oil enrichment and its controlling factors in the study area. The most favourable oil pools predicted by this paper have significant economic and social benefits, which has been confirmed by the exploration. The main conclusions and knowledge includes: (1) Resolving the problems, which remain unresolvable for a long time in the western area of Boxing depression, about the original environment and the spatial distribution of sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia, and illuminating their relationships. It is suggested that two deltas or delta-related sandbody sediments, which include the delta sandbodies of Jinjia and Gaoqing and their frontal turbidite fan sandbody, are developed in the second and third members of Shahejie Formation. The sandbodies of Fanjia, Gaoqing and Zhenglizhuang are components of Gaoqing delta and belong to the sediments of various periods in different part of the delta. Whereas, the sandbody of Jinjia belong to the Jinjia delta or fan-delta created by the uplift of the Western Shandong and in some areas shows the features of juxtaposition, superimposed deposition and fingeration with the sandbodies of Gaoqing and Zhenglizhuang. (2)Proposing that the sandbodies of different origins in the deltas of Gaoqing and Jinjia have obvious different reservoir qualities, among which the delta frontal bedded sandbodies in the second member of Shahejie Formation in Zhenglizhuang are the best ones and the turbidite sandbody of Fanjia is relatively worse. This shows the direction of further reservoir prediction. (3) According to modern petroleum system theory and continental pool-formation theory, the author divided the western area of Boxing depression into the Jinjia—Zhenglizhuang—Fanjia nose structure belt pool-formation system and the Gaoqing fracture belt pool-formation system. The study area is predominantly located in the former belt and subdivided into pool-formation sub-systems of Zhenglizhuang-Fanjia and Jinjia, which have the source rock of mudstone and oil shale from the upper forth member and the third member of Shahejie Formation in Boxing depression. The hydrocarbon migration and accumulation are controlled by Jinjia-Zhenglizhuang-fanjia nose structure and Gaoqing fracture. (4)Proposing that compared with the best developed sandbodies and traps in the west area of Boxing, the source from the Boxing depression is not sufficient, which is the fundamental reason that the hydrocarbon resources in mid-west area is less than in the east of Boxing. (5) Under the direction of the new theory (fluid compartments theory) and new method of modern pool-formation mechanism, two kinds of pool-formation model are established in study, i.e. inner-compartment model and outer-compartment model. The former has abnormal pressure and is the antigenic source seal pool-forming mechanism, whereas the latter has normal pressure and is of the allochthonous source opening pool-formation mechanism. (6)The study shows that the four sandbodies of Gaoqing, Fanjia, Jinjia and Zhenglizhuang sand are all very benefit for pool-formation, among which the Fanjia sandbody is the best favourable one and is likely to form lithological reservoir and fault-lithological reservoir. But the main step of exploration in Gaoqing, Zhenglizhuang sandbodies should be finding out the fault block, reversed roof and stratum-lithological oil reservoir. (7)Established a set of guidelines and techniques for the research and exploration in the large scale of sandbodies. Proposing that the various traps related to reversed fault and basin-ward fault should be found in step slopes and gentle slopes respectively, and the lithological oil reservoir should mainly be found in the sandstone updip pinch out. It is also suggested that Fanjia sandbody is most favourable to form the lithological and fault-lithological and the Gaoqing, Zhenglizhuang and Jinjia sandbodies have the potential of forming fault block, reversed roof and stratum-lithological oil reservoir. (8) Interpretation and prediction the spatial distribution of main sandbodies based on various geophysical methods suggestion that Fanxi, Gao28 south and Gao27 east have better exploration potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dongying depression, located in the northern part of the jiyang Sag in the Buohaiwan Basin, comprises one of the major oil-producing bases of the Shengli oil-field. The prediction and exploration of subtle or litho1ogical oil traps in the oil-field has become the major confronted target. This is also one of the frontier study areas in the highly-explored oil-bearing basins in East China and abroad. Based on the integrated analysis of the geological, seismic and logging data and the theories of sequence stratigraphy, tectono-stratigraphy and petroleum system, the paper has attempted to document the characteristics of the sequence stratigraphic and structural frameworks of the low Tertiary, the syndepositional faults and their control on deposition, and then to investigate the forming conditions and distribution of the tithological oil traps in the depression. The study has set up a set of analysis methods, which can be used to effectively analysis the sequence stratigraphy of inland basins and predict the distribution of sandstone reservoirs in the basins. The major achievements of the study are as follows: 1. The low Tertiary can be divided into 4 second-order sequences and 13 third-order sequences, and the systems tracts in the third-order sequences have been also identified based on the examination and correction of well logging data and seismic profiles. At the same time, the parasequences and their stacking pattern in the deltaic systems of the third member of the Shahejie Formation have been recognized in the key study area. It has been documented that the genetic relation of different order sequences to tectonic, climatic and sediment supply changes. The study suggested that the formation of the second-order sequences was related to multiple rifting, while the activity of the syndepositional faults controlled the stacking pattern of parasequences of the axial deltaic system in the depression. 2. A number of depositional facies have been recognized in the low Tertiary on the basis of seismic facies and well logging analysis. They include alluvial fan, fan delta or braided delta, axial delta, lowstand fan, lacustrine and gravity flow deposits. The lacustrine lowstand fan deposits are firstly recognized in the depression, and their facies architecture and distribution have been investigated. The study has shown that the lowstand fan deposits are the important sandstone reservoirs as lithological oil traps in the depression. 3. The mapping of depositional systems within sequences has revealed the time and special distrbution of depositional systems developed in the basin. It is pointed out that major elastic systems comprise the northern marginal depositional systems consisting of alluvial fan, fan delta and offshore lowstand fan deposits, the southern gentle slope elastic deposits composed of shallow lacustrine, braided delta and lowstand fan deposits and the axial deltaic systems including those from eastern and western ends of the depression. 4. The genetic relationship between the syndepositional faults and the distribution of sandstones has been studied in the paper, upper on the analysis of structural framework and syndepositional fault systems in the depression. The concept of structural slope-break has been firstly introduced into the study and the role of syndepositional faults controlling the development of sequence architecture and distribution of sandstones along the hinged and faulted margins have been widely investigated. It is suggested that structural styles of the structural slope-break controlled the distribution of lowstand fan deposits and formed a favorable zone for the formation of lithological or structure-lithological oil traps in the basin. 5. The paper has made a deep investigation into the forming condition and processes of the lithological traps in the depression, based the analysis of composition of reservoir, seal and resource rocks. It is pointed out that there were two major oil pool-forming periods, namely the end of the Dongying and Guangtao periods, and the later one is the most important. 6. The study has finally predicted a number of favorable targets for exploration of lithologieal traps in the depression. Most of them have been drilled and made great succeed with new discovered thousands tons of raw oil reserves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is an important part of "95" technological subject of SINOPEC. It has a large number of difficulties and workloads, and has significant theoretical meanings and practical value. The study area is composed of sandstone & conglomerate reservoir of alluvial fan & fan delta, which belong to Sha3 lower member and Sha4 upper member of lower tertiary of Yong'an Town Oilfield in Dongying Depression. The target stataum develops in the hanging wall of the synsedimentary fault in the scarp zone of Dongying Depression. The frequently intense movements result in the variation of sandstone and conglomerate reservoir and the evolution of the time and space of Sha3 lower member and Sha4 upper member in Yong'an Town Oilfield. As a result, it is difficult for the individual reservoir correlation at the root of fan, which bring about a tackle problem for the exploitation of oilfield. In this background, the research of fluid units will be more difficult. In this article, the new concepts, the new methods, and the new techniques of sedimentology, petroleum geology, reservoir geology, physics of crystal surface, dynamic & static state reservoir description and well logging geology are synthetically applied, and the computer technology are made full uses of, and the identifying, dividing and appraising of the two-formation-type sandstone & conglomerate reservoir fluid units of Sha3 lower member and Sha4 upper member systemically analyzed in Yong'an Town Oilfield, Dongying Depression. For the first time, the single-well model, the section model, the plane model, the nuclear magnetism log model, the microcosmic network model, the 4-D geology model and the simulation model of the two-formation-type reservoir fluid units of the of sandstone & conglomerate reservoir of Sha3 lower member and Sha4 upper member are established, and the formative mechanism and distributing & enrichment laws of oil-gas of the two type of sandstone and conglomerate reservoir fluid units are revealed. This article established the optimizing, identifying, classifying and appraising standard of the two-formation-type reservoir fluid units of the of sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which settles the substantial foundations for static state model of the fluid units, reveals the macroscopic & microcosmic various laws of geometrical static state of the fluid units, and instructs the oil exploitation. This article established static state model of the two-formation-type sandstone and conglomerate reservoir fluid units by using the multi-subject theories, information and techniques, and reveals the geometrical configuration, special distribution and the oil-gas enrichment laws of the sandstone and conglomerate reservoir fluid units. For the first time, we established the nuclear magnetism log model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which reveals not only the character and distributing laws of the porosity and permeability, bat also the formation and distribution of the movable fluid. It established six type of microcosmic net model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member in the working area by using the advanced theories, such as rock thin section, SEM, image analysis, intrusive mercury, mold, rock C.T. measure & test image etc., which reveals the microcosmic characteristic of porosity & throat, filterate mode and microcosmic oil-gas enrichment laws of the sandstone and conglomerate reservoir. For the first time, it sets up the 4-D model and mathematic model of the sandstone and conglomerate reservoir, which reveals the distributing and evolving laws of macroscopic & microcosmic parameters of the two-formation-type sandstone and conglomerate reservoir and oil-gas in 4-D space. At the same time, it also forecasts the oil-gas distribution and instructs the oilfield exploitation. It established reservoir simulation model, which reveals the filterate character and distributing laws of oil-gas in different porosity & throat net models. This article established the assistant theories and techniques for researching, describing, indicating and forecasting the sandstone and conglomerate reservoir fluid units, and develops the theories and techniques of the land faces faulted basin exploitation geology. In instructing oilfield exploitation, it had won the notable economic & social benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foundation of reservoir model and residual oil prediction have been the core of reservoir detailed description for improved oil production and enhanced oil recovery. The traditional way of sandstone correlation based on the geometrical similarity of well-logs which emphasizes "based on the cycle and correlating from larger to smaller" has shown its theoretical limits when explaining the correlating and the scale, geometry, continuity, connectivity of sandstones and the law of the reservoir property. It has been an urgent and difficult subject to find new theory and methods to solve the reservoir correlation and property prediction. It's a new way to correlate strata and found framework of reservoir through the process-response analysis in the base-level cycles. And it is also possible to analyze the reservoir property in reservoir framework. Taking the reservoir of zonation 6-10 in S3~2 of Pucheng Oil Field in Henan Province as an example, we founded the detailed reservoir stratigraphic framework through base-level correlation. In the strata frame, sediment distribution and its development are discussed based on sediment volume partitioning and facies differentiation analysis. Reservoir heterogeneities and its relation to base-level are also discussed. The analysis of primary oil distribution shows the base-level controlled oil distribution in reservoir. In this paper, subjects as following are discussed in detail. Based on the analysis of sedimentary structure and sedimentary energy, the facies model was founded. Founding stratigraphy framework through base level analysis In the studying zone, one long term cycle, 6 middle term cycles and 27 short term cycles was identified and correlated. 3 Predicting the property of reservoir for improving oil development The base level controlled the property of sandbody. The short and very short term cycle controlled the pattern of heterogeneities in sandbody, and the middle and long term cycle controlled the area and inter-layer heterogeneities. On the lower location of the middle and long term base level, the sandbody is well developed, with a wide area and large thickness, while on the high location of base level, there is an opposite reservoir character. 4 The studying of reservoir development response and oil distribution making a solid base for development adjustment Primary oil distribution is controlled by base level location. It tells that the sandbody on the high base level location was poor developed for its difficulty to develop. While on the low location of the base level, the sandbody is well developed for its relative easy to develop and dominant role in the development, but high residual oil for its high original oil content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation tries to combine the new theories of high-resolution sequence stratigraphy and reservoir architecture with fine sedimentology to form a integral theory system -"high-resolution sequence sedimentology", which can be applied widely ranging from the early petroleum exploration to the tertiary recovery stage in marine and terrestrial basin. So the west slope area in south of Songliao basin, in which, early-fine exploration have been developed, and Xingnan area of Daqing placantictine in high water-bearing and tertiary recovery stage, are selected as target areas to research and analyze. By applying high-resolution sequence stratigraphy theory as well as analysis of source area-facies, the west slope area has been divided into two source areas and three drainage systems and the following conclusions have been drawn: three high values sandstone areas, two sandstone pinchout zones and one stratigraphic pinchout overlap; the facies between Baicheng-Tongyu drainage system is frist ascertained as large-scale argillaceous filled plain facies; fine-grained braided channel-delta depositional system has been found; plane sedimentary facies and microfacies maps of different-scale sequence have been completed, and then twenty-eight lithologic traps have been detected in the east of Taobao-Zhenlai reverse fault zone; In no exploration area of the west, large-scale stratigraiphic overlap heavy oil reservoirs has first been found, which has become an important prograss. In Xingnan area, in the view of high-resolution sequence stratigraphy, the surface of unconformity (the bottom of SSC13) in P I group has been identified, and the following method and technique have been advanced: the division and correlation methods of short-scale base-level cycle sequence (SSC); the comprehensive research methods of SSC plane microfacies; the division technique of hierarchy and type of flow unit, the origin of large-scale composite sandbody and flow unit; And ,on the basis of these, 103 monosandstone bodies and 87 flow units of the third levels have been identified, and four levels of flow units model of five sandstone-bodies types have been established. Because it is a very difficult task all over the world to research architecture in subsurface monosandstone body, brings forward a series of techniques as follows: technique of researching architecture of thin interbed in subsurface monosandstone body; classification, type and liquid-resisting mechanism of thin interbed; multiple-remember vertical subsequence model of remaining oil in monosadstone body. Models of heterogeneity and architecture of thin interbed in five types of monosandstone body have been established. Applying these techniques, type and distribution of remaining oil in different types of monosandstone bodies have been predicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through years of practice, reservoir management has already become the basic mode of foreign oil companies to realize the high-efficient development of the oil field. From the view of reservoir development and technological economy, reservoir management regards the study of the reservoir engineering, designs of reservoir projects and the dynamic analysis of the reservoir's performance as a system. In the fields of reservoir description, the establishment of the geological models and development models, the dynamic simulations of reservoir exploitation and the design of the oil engineering, reservoir management emphasizes the cooperation of the geology and the engineering, the combination of the engineering technology and the economic evaluation. In order to provide the means and basis for the reservoir geology study, reservoir evaluation, reserves calculation, numerical simulation, development plan and risk analysis, it adopts the reservoir management activities(team work) to make and implement the optimized oil field development management strategies so that secientific and democratic decision making can be achieved. Under the planned economic system for a long time, the purpose of Chinese reservoir development has been to fulfill the" mandatory" production task. With the deepening of the reform, the management organization of Chinese petroleum enterprises has been gradually going through the transition and reforms to the operational entity and the establishment of the mode of oil companies under the socialist market economy system. This research aims at introducing the advanced reservoir management technique from foreign countries to further improve the reservoir development results and wholly raise the economic benefits of Chinese mature land facieses sandstone reservoirs in the later stage of the water flooding. We are going to set up a set of modern reservoir management modes according to the reservoir features, current situation and existing problems of GangXi oil field of DaGang oil company. Through the study and implementation of the reservoir description and numerical simulation technology effectively, we plan to work out integrated adjustment projects, to study the related technology of oil recovery; to set up the effective confirmable data procedure and data management system of the reservoir management, to establish the coordinated model and workbench related to geology, engineering and economy in order to realize the real time supervision and evaluation on the process of reservoir development. We hope to stipulate modernization management tools for GangXi oil fields to rationally utilize various kinds of existing technological methods and to realize the economic exploitation and achieve the maximum benefits from the reservoir. The project of the modem reservoir management will be carried out on the GangXi oil field of DaGang oil company for this oil field is typical and has integrated foundamental materials and perfect networks. Besides, it is located in the good geographical position enjoying very convenient traffic. Implementing modern reservoir management will raise the recovery ratio, reduce the production cost and improve the working efficiency. Moreover, the popularization of modern reservoir management will improve the comprehensive benefits of DaGang oil company and even the whole Petro China. Through the reserch of this project, the following technical indicators can be reached: Establishing the concept of modern reservoir management. Establishing a set of integrated data information management system adapt to the features of GangXi reservoir. 3. Forming technical research modes of modern reservoir management suitable for mature reservoirs in the later developing stage. 4. Advancing projects of GangXi reservoir which are maxium optimized in engineering technique and economic benefits of oil exploitation. Besides, this set of technology, research principle and method can guide the mature reservoir of DaGang oil field and even the whole PetroChina to develop the further research of reservoir adjustment and improve the reservoir recovery factor and developing level constantly.