949 resultados para residual gas analysis
Resumo:
The morphology and distribution of high-pressure metastable phases BC8 and R8, formed in monocrystalline silicon under microindentation, were identified and assessed using transmission electron microscopy nanodiffraction analysis. It was discovered that the crystal growth inside the transformation zone was stress-dependent with large crystals in its central region. The crystal size could also be increased using higher maximum indentation loads. The BC8 and R8 phases distributed unevenly across the transformation zone, with BC8 crystals mainly in the center of the zone and smaller R8 fragments in the peripheral regions. Such phase distribution was in agreement with the theoretical residual stress analysis.
Resumo:
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.
Resumo:
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The metabolic syndrome (MS) is associated with cardiovascular risk exceeding that expected from atherosclerotic risk factors, but the mechanism of this association is unclear. We sought to determine the effects of the MS on myocardial and vascular function and cardiorespiratory fitness in 393 subjects with significant risk factors but no cardiovascular disease and negative stress echocardiographic findings. Myocardial function was assessed by global strain rate, strain, and regional systolic velocity (s(m)) and diastolic velocity (e(m)) using tissue Doppler imaging. Arterial compliance was assessed using the pulse pressure method, involving simultaneous radial applanation tonometry and echocardiographic measurement of stroke volume. Exercise capacity was measured by expired gas analysis. Significant and incremental variations in left ventricular systolic (s(m), global strain, and strain rate) and diastolic (e(m)) function were found according to the number of components of MS (p <0.001). MS contributed to reduced systolic and diastolic function even in those without left ventricular hypertrophy (p <0.01). A similar dose-response association was present between the number of components of the MS and exercise capacity (p <0.001) and arterial compliance. The global strain rate and em were independent predictors of exercise capacity. In conclusion, subclinical left ventricular dysfunction corresponded to the degree of metabolic burden, and these myocardial changes were associated with reduced cardiorespiratory fitness.' Subjects with MS who also have subclinical myocardial abnormalities and reduced cardiorespiratory fitness may have a higher risk of cardiovascular disease events and heart failure. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The rates of reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke, bituminous coal and anthracitic coal chars at temperatures in the range 1 673-1873 K have been measured using a sessile drop technique. The extents of reaction were determined using EPMA analysis of quenched samples, and on line gas analysis using a quadrupole mass spectrometer. The reaction rates have been shown to be dependent critically on carbon type. For the reaction geometry used in this investigation the reduction rates of graphite and coke are observed to be faster than with coal chars. This unexpected finding is shown to be associated with differences in the dominant chemical and mass transfer mechanisms occurring at the reaction interface. High reaction rates are observed to occur with the formation of liquid Fe-C alloy product and the associated gasification of carbon from the alloy. The rates of reduction by coal chars are determined principally by the chemical reaction at the carbon/gas interface and slag phase mass transfer.
Resumo:
The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Walking programmes are recommended as part of the initial treatment for intermittent claudication (IC). However, for many patients factors such as frailty, the severe leg discomfort associated with walking and safety concerns about exercising in public areas reduce compliance to such prescription. Thus, there is a need to identify a mode of exercise that provides the same benefits as regular walking while also offering convenience and comfort for these patients. The present study aims to provide evidence for the first time of the efficacy of a supervised cycle training programme compared with a conventional walking programme for the treatment of IC. Methods: Thus far 33 patients have been randomized to: a treadmill-training group (n = 12); a cycle-training group (n = 11); or a control group (n = 10). Training groups participated in three sessions of supervised training per week for a period of 6 weeks. Control patients received no experimental intervention. Maximal incremental treadmill testing was performed at baseline and after the 6 weeks of training. Measures included pain-free (PFWT) and maximal walking time (MWT), continuous heart rate and gas-analysis recording, and ankle-brachial index assessment. Results: In the treadmill trained group MWT increased significantly from 1016.7 523.7 to 1255.2 432.2 s (P < 0.05). MWT tended to increase with cycle training (848.72 333.18 to 939.54 350.35 s, P = 0.14), and remained unchanged in the control group (1555.1 683.23 to 1534.7 689.87 s). For PFWT, there was a non-significant increase in the treadmill-training group from 414.4 262.3 to 592.9 381.9 s, while both the cycle training and control groups displayed no significant change in this time (226.7 147.1 s to 192.3 56.8 and 499.4 503.7 s to 466.0 526.1 s, respectively). Conclusions: These preliminary results might suggest that, unlike treadmill walking, cycling has no clear effect on walking performance in patients with IC. Thus the current recommendations promoting walking based programmes appear appropriate. The present study was funded by the National Heart Foundation of Australia.
Resumo:
A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.
Resumo:
The objective of this study was to design, construct, commission and operate a laboratory scale gasifier system that could be used to investigate the parameters that influence the gasification process. The gasifier is of the open-core variety and is fabricated from 7.5 cm bore quartz glass tubing. Gas cleaning is by a centrifugal contacting scrubber, with the product gas being flared. The system employs an on-line dedicated gas analysis system, monitoring the levels of H2, CO, CO2 and CH4 in the product gas. The gas composition data, as well as the gas flowrate, temperatures throughout the system and pressure data is recorded using a BBC microcomputer based data-logging system. Ten runs have been performed using the system of which six were predominantly commissioning runs. The main emphasis in the commissioning runs was placed on the gas clean-up, the product gas cleaning and the reactor bed temperature measurement. The reaction was observed to occur in a narrow band, of about 3 to 5 particle diameters thick. Initially the fuel was pyrolysed, with the volatiles produced being combusted and providing the energy to drive the process, and then the char product was gasified by reaction with the pyrolysis gases. Normally, the gasifier is operated with reaction zone supported on a bed of char, although it has been operated for short periods without a char bed. At steady state the depth of char remains constant, but by adjusting the air inlet rate it has been shown that the depth of char can be increased or decreased. It has been shown that increasing the depth of the char bed effects some improvement in the product gas quality.
Resumo:
Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.
Resumo:
This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.