946 resultados para replica-exchange molecular dynamics (REMD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explore the inhibitory mechanism of coumarins toward aldose reductase (ALR2), AutoDock and Gromacs software were used for docking and molecular dynamics studies on 14 coumarins (CM) and ALR2 protease. The docking results indicate that residues TYR48, HIS110, and TRP111 construct the active pocket of ALR2 and, besides van der Waals and hydrophobic interaction, CM mainly interact with ALR2 by forming hydrogen bonds to cause inhibitory behavior. Except for CM1, all the other coumarins take the lactone part as acceptor to build up the hydrogen bond network with active-pocket residues. Unlike CM3, which has two comparable binding modes with ALR2, most coumarins only have one dominant orientation in their binding sites. The molecular dynamics calculation, based on the docking results, implies that the orientations of CM in the active pocket show different stabilities. Orientation of CM1 and CM3a take an unstable binding mode with ALR2; their conformations and RMSDs relative to ALR2 change a lot with the dynamic process. While the remaining CM are always hydrogen-bonded with residues TYR48 and HIS110 through the carbonyl O atom of the lactone group during the whole process, they retain the original binding mode and gradually reach dynamic equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Van den Berg, A. W. C., Flikkema, E., Lems, S., Bromley, S. T., Jansen, J. C. (2006). Molecular dynamics-based approach to study the anisotropic self-diffusion of molecules in porous materials with multiple cage types: Application to H-2 in losod. Journal of physical chemistry b, 110 (1), 501-506. RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have implemented a large-scale classical molecular dynamics simulation at constant temperature to provide a theoretical insight into the results of a recently performed experiment on the monolayer and multi-layer formations of molecular films on the Si(100) reconstructed dimerized surface. Our simulation has successfully reproduced all of the morphologies observed on the monolayer film by this experiment. We have obtained the formation of both c(4 4) and c(4 3) structures of the molecules and have also obtained phase transitions of the former into the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed for the first time a molecular dynamics simulation of the adsorption of gas-phase Ag particles on a graphite substrate to provide an insight into the results of a comprehensive STM-based experiment on this system. Both pair-wise and many-body interatomic potentials have been employed, and a Morse-type Ag–C potential was specifically constructed to describe the interactions at the interface. Our simulation has successfully reproduced a significant portion of the experimental findings. We have also observed the intercalation of silver in graphite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale molecular dynamics simulations have been performed on canonical ensembles to model the adhesion and indentation characteristics of 3-D metallic nano-scale junctions in tip-substrate geometries, and the crack propagation in 2-D metallic lattices. It is shown that irreversible flows in nano-volumes of materials control the behaviour of the 3-D nano-contacts, and that local diffusional flow constitutes the atomistic mechanism underlying these plastic flows. These simulations show that the force of adhesion in metallic nano-contacts is reduced when adsorbate monolayers are present at the metal—metal junctions. Our results are in agreement with the conclusions of very accurate point-contact experiments carried out in this field. Our fracture simulations reveal that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures, the nucleation of dislocations is shown to cause a brittle-to-ductile transition. Limiting crack propagation velocities are computed for different strain rates and a dynamic instability is shown to control the crack movement beyond this limiting velocity, in line with the recent experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio molecular dynamics simulations have been performed for the first time on the room-temperature organic ionic liquid dimethyl imidazolium chloride [DMIM][Cl] using density functional theory. The aim is to compare the local liquid structure with both that obtained from two different classical force fields and from neutron scattering experiments. The local structure around the cation shows significant differences compared to both the classical calculations and the neutron results. In particular, and unlike in the gas-phase ion pair, chloride ions tend to be located near a ring C-H proton in a position suggesting hydrogen bonding. The results are used to suggest ways in which the classical potentials may be improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electronically polarizable model has been developed for the ionic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM+/NO3-), Molecular dynamics simulation studies were then performed on both the polarizable and nonpolarizable versions of the model. Comparisons of shear viscosity and diffusion constants at 400 K show that the effects of polarizability are quite substantial and the polarizable model results are in better agreement with the experimental values.