892 resultados para replacement exploitation
Resumo:
In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.
Resumo:
(2006) Vol. 35 No. 8 317
Resumo:
We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.
Resumo:
In a laboratory experiment that permitted both observations of the behaviour of individuals and the monitoring of small populations, the role of 'intraguild predation' in the elimination of the freshwater amphipod Gammarus duebeni celticus by the introduced G. pulex was examined. Over 18 weeks, deaths in single and mixed species replicates were monitored. Rates of 'mortality' (deaths not due to cannibalism or predation) did not differ between the species. Gammarus cl. celticus, however, was more cannibalistic than G. pulex and, in both species, males were more often cannibalized than females. In mixed species replicates, the mean proportions of animals preyed upon did not differ among replicates with differing starting proportions of the two species, nor was there a difference between the sexes in numbers preyed upon. G. pulex, however, preyed more frequently on G. d celticus than vice versa, and this became more pronounced over time. In 87% of mixed species replicates, G. pulex eliminated G. d. celticus. The results support the proposition that intraguild predation may be the primary mechanism whereby G. pulex rapidly replaces G. d. celticus in freshwater. Integrating behavioural observations with population level monitoring may thus link pattern and process in behaviour and ecology.