959 resultados para regime of temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A future business-as-usual scenario (A1FI) was tested on two bloom-forming cyanobacteria of the Baltic Proper, Nodularia spumigena and Aphanizomenon sp., growing separately and together. The projected scenario was tested in two laboratory experiments where (a) interactive effects of increased temperature and decreased salinity and (b) interactive effects of increased temperature and elevated levels of pCO2 were tested. Increased temperature, from 12 to 16 °C, had a positive effect on the biovolume and photosynthetic activity (F v/F m) of both species. Compared when growing separately, the biovolume of each species was lower when grown together. Decreased salinity, from 7 to 4, and elevated levels of pCO2, from 380 to 960 ppm, had no effect on the biovolume, but on F v/F m of N. spumigena with higher F v/F m in salinity 7. Our results suggest that the projected A1FI scenario might be beneficial for the two species dominating the extensive summer blooms in the Baltic Proper. However, our results further stress the importance of studying interactions between species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes-remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.