972 resultados para reaction-kinetics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goals of this project are to develop a Reactive Air Brazing (RAB) alloy and process for joining Barium strontium cobalt ferrite (BSCF), and to develop a fundamental understanding of the wettability and microstructral development due to reaction kinetics in BSCF/Ag-MexOy systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Weyburn Oil Field, Saskatchewan is the site of a large (5000 tonnes/day of CO2) CO2-EOR injection project By EnCana Corporation. Pre- and post-injection samples (Baseline and Monitor-1, respectively) of produced fluids from approximately 45 vertical wells were taken and chemically analyzed to determine changes in the fluid chemistry and isotope composition between August 2000 and March 2001. After 6 months of CO2 injection, geochemical parameters including pH, [HCO3], [Ca], [Mg], and ?13CO2(g) point to areas in which injected CO2 dissolution and reservoir carbonate mineral dissolution have occurred. Pre-injection fluid compositions suggest that the reservoir brine in the injection area may be capable of storing as much as 100 million tonnes of dissolved CO2. Modeling of water-rock reactions show that clay minerals and feldspar, although volumetrically insignificant, may be capable of acting as pH buffers, allowing injected CO2 to be stored as bicarbonate in the formation water or as newly precipitated carbonate minerals, given favorable reaction kinetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis ha estudiado los morteros celulares, centrándose en la experimentación con pastas de cemento aireadas (PCA) con polvo de aluminio como agente expansor. El objetivo es el desarrollo de un material cementicio con una baja conductividad térmica que sirva como aislamiento térmico. La naturaleza inorgánica del material lo hace incombustible, en contraste con las espumas poliméricas existentes en el mercado, cuya aplicación en cámaras ventiladas ha sido prohibida por normativas de construcción tanto a nivel nacional como internacional. Las posibles aplicaciones son con proyección neumática o en paneles prefabricados. Se han ensayado dos series de pastas de cemento con polvo de aluminio: - Serie WPC/CAC/CH. Mezcla de referencia con cemento blanco (WPC), cemento de aluminato cálcico (CAC) y cal aérea (CH) en proporción 5:1:4. - Serie OPC/CH. Mezcla de referencia con cemento portland con cenizas volantes (OPC) y cal aérea (CH) en proporción OPC/CH de 4:1 A las mezclas de referencia se le han añadido adiciones de metacaolín (MK) (10 y 20%) o sepiolita (SP) (1 y 2%) para observar el efecto que producen tanto en el mortero fresco como en el mortero endurecido. Se ha estudiado la reología de las pastas en estado fresco, analizando el proceso de expansión de las pastas, registrando los valores de tensión de fluencia, aire ocluido y temperatura durante la expansión. Con los valores obtenidos se ha discutido la influencia de las adiciones utilizadas en la cinética de corrosión del polvo de aluminio que genera la expansión, concluyendo que las adiciones puzolánicas (CV y MK) y la SP reducen mucho el periodo de inducción, lo que provoca poros más grandes y mayor cantidad de aire ocluido. Asimismo se ha analizado la relación entre la tensión de fluencia y el contenido de aire ocluido, deduciendo que a mayor tensión de fluencia en el momento de iniciarse la expansión, menor tamaño de poros y contenido de aire ocluido. Finalmente, se han obtenido las densidades y capacidades de retención de agua de los morteros frescos. Para caracterizar la red porosa de las pastas aireadas endurecidas, se obtuvieron tanto las densidades reales, netas, aparentes y relativas como las porosidades abiertas, cerradas y totales con ensayos hídricos. Finalmente se obtuvieron imágenes de los poros con tomografía axial computerizada para obtener las porosimetrías de las muestras. La caracterización de la red porosa ha servido para terminar de analizar lo observado en la evolución de la expansión del mortero fresco. Se ha analizado la influencia de la red porosa en la conductividad térmica, obtenida con caja caliente, comparándola con la existente en la literatura existente tanto de morteros celulares como de espumas poliméricas. Se concluye que los valores de conductividad térmica conseguida están en el mínimo posible para un material celular de base cementicia. La microestructura se ha estudiado con microscopía electrónica de barrido, difracción de rayos X y ensayos térmicos TG/ATD, observando que los productos de hidratación encontrados coinciden con los que se producen en morteros sin airear. Las imágenes SEM y los resultados de ultrasonidos han servido para analizar la presencia de microfisuras de retracción en las pastas aireadas, observando que en las muestras con adiciones de MK y SP, se reduce la presencia de microfisuras. ABSTRACT This thesis has studied cellular mortars, focusing in testing aerated cement pastes with aluminum powder as expansive agent. The purpose is the development of a cementitious material with low thermal conductivity that can be used as thermal isolation. Inorganic nature of this material makes it non-combustible, in contrast with polymeric foams in market, whose application in ventilated double skin façade systems has been banned by building standards, both domestically and internationally. Possible uses for this material are pneumatically sprayed applications and precast panels. Two series of batches with aluminum powder have been tested: - WPC/CAC/CH series. Reference paste with white portland cement (WPC), calcium aluminate cement (CAC) and lime (CH) with 5:1:4 ratio. - OPC/CH series. Reference paste with portland cement with fly ash (OPC) and lime (CH) with 4:1 ratio. Metakaolin (MK) (10 and 20%) or sepiolite (SP) (1 and 2%) additions were used in reference pastes to characterize the effect in fresh and hardened mortar. Rheology in fresh pastes was studied, expansion process of pastes was analyzed, recording yield stress, entrained air and temperature values during expansion. Recorded values were used to discuss influence of additions on reaction kinetics of aluminum powder corrosion, that produces expansion.. Conclusion is that pozzolanic additions (FA and MK) and SP greatly reduce induction period, producing bigger pores and more entrained air. Relation between yield stress and entrained air has been also analyzed, observing that the bigger yield stress at beginning of expansion, the smaller pores size and the lower entrained air values. Finally density and water retention of fresh mortars were obtained. Pore network in hardened aerated cement pastes was characterized by imbibition methods providing true, bulk and relative density, and providing also open, closed and total porosity. Finally, pore system imaging were obtained with computerized axial tomography to study porosimetry of specimens. Pore network characterization was useful to complete facts analysis observed in expansion of fresh mortars. Influence of pore network in thermal conductivity, checked in hot box, was analyzed comparing with those existing values in cellular mortar and polymeric foams researches. It was concluded that thermal conductivity values achieved are close to minimum possible in a cementitious cellular material. Microstructure was studied with Scanning Electron Microscopy, X-Ray Diffractometry and TG-DTA analysis, observing that hydration phases found, are those produced in non aerated mortar. SEM imaging and ultrasound results were useful to analyze shrinkage microcracks in aerated cement pastes, concluding that microcrack presence in specimens with MK and SP additions were reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Devido ao esgotamento de recursos não renováveis e o aumento das preocupações sobre as alterações climáticas, a produção de combustível renovável a partir de microalgas continua a atrair muita a atenção devido ao seu potencial para taxas rápidas de crescimento, alto teor de óleo, capacidade de crescer em cenários não convencionais e a neutralidade de carbono, além de eliminar a preocupação da disputa com as culturas alimentares. Em virtude disso, torna-se importante o desenvolvimento de um processo de conversão das microalgas em gás combustível, em destaque o gás de síntese. Visando essa importância, estudou-se a reação de gaseificação da microalga Chlorella vulgaris através de experimentos de análise termogravimétrica para estimar os parâmetros cinéticos das reações e através da simulação de um modelo matemático dinâmico termoquímico do processo usando equações de conservação de massa e energia acoplados a cinética de reação. Análises termogravimétricas isotérmicas e dinâmicas foram realizadas usando dois diferentes tipos de modelos cinéticos: isoconversionais e reações paralelas independentes (RPI). Em ambos os modelos, os valores dos parâmetros cinéticos estimados apresentaram bons ajustes e permaneceram dentro daqueles encontrados na literatura. Também foram analisados os efeitos dos parâmetros cinéticos do modelo RPI sobre a conversão da microalga no intuito de observar quais mais se pronunciavam diante a variação de valores. Na etapa de simulação do sistema controlado pelo reator solar, o modelo matemático desenvolvido foi validado por meio da comparação dos valores de temperatura e concentrações de produtos obtidos medidos experimentalmente pela literatura, apresentando boa aproximação nos valores e viabilizando, juntamente com a etapa experimental de termogravimetria, a produção de gás de síntese através da gaseificação da microalga Chlorella vulgaris.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O aumento no consumo mundial de novos aparelhos eletroeletrônicos aliado à redução no tempo de vida útil destes equipamentos tem como principal consequência ao meio ambiente a geração de resíduos. No Brasil, com a instituição da Política Nacional de Resíduos Sólidos, criou-se a obrigatoriedade legal da responsabilidade dos fabricantes pela logística reversa dos equipamentos eletroeletrônicos, incentivando pesquisas para o desenvolvimento dos métodos de reciclagem e tratamento dos materiais descartados. O processo de lixiviação foi avaliado como alternativa à etapa de separação magnética presente nas atuais rotas hidrometalúrgicas para recuperação de metais valiosos de placas de circuito impresso. Para avaliar a composição das placas, foi realizado ensaio de dissolução em água régia. As amostras foram moídas e submetidas a ensaios de lixiviação com ácido sulfúrico nas concentrações de 1 e 2mol/L, às temperaturas de 75ºC, 85ºC e 95ºC, durante 24 horas. Com ácido sulfúrico 2mol/L a 95ºC, o tempo necessário para se obter 100% de extração do ferro foi de 2 horas. Nestas condições, não foi detectada a presença de cobre dissolvido. A cinética da reação é controlada por reação química e obedece a equação .=1(1)3. A energia de ativação aparente do processo equivale a 90kJ/mol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four different catalysts (Pt/Al2O3, Ce0.8Zr0.2O2, PrO2−x and SrTiCuO3) have been investigated on a laboratory scale to evaluate their potential as diesel soot combustion catalysts under different experimental conditions, which simulate the situation found in a continuous regeneration technology trap (dual-bed configuration of catalyst and soot) or a catalyst-coated filter system (single-bed configuration, both catalyst and soot particles mixed under loose-contact mode). Under dual-bed configuration, the behavior of the catalysts towards soot combustion are very similar, despite the differences observed in the NO2 production profiles. However, under single-bed configuration, there are important differences in the soot combustion activities and in the NO2 slip profiles. The configurations chosen have an enormous impact on CO/(CO + CO2) ratios of combustion products as well. The most active catalyst under NOx + O2 is PrO2−x combining a high contribution of active oxygen-assisted soot combustion as well as high NO2 production activity along the catalytic bed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review is given on the fundamental studies of gas-carbon reactions using electronic structure methods in the last several decades. The three types of electronic structure methods including semi-empirical, ab initio and density functional theory, methods are briefly introduced first, followed by the studies on carbon reactions with hydrogen and oxygen-containing gases (non-catalysed and catalysed). The problems yet to solve and possible promising directions are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend our Lanczos subspace time-independent wave packet method [J. Chem. Phys. 116 (2002) 2354] to investigate the issue of symmetry contaminations for the challenging deep-well H + O-2 reaction. Our central objective is to address the issue of whether significant symmetry contamination can occur if a wavepacket initially possessing the correct O-O exchange symmetry is propagated over tens of thousands of recursive steps using a basis which does not explicitly enforce the correct symmetry, and if so how seriously this affects the results. We find that symmetry contamination does exist where the symmetry constraint is not explicitly enforced in the basis. While it affects individual resonances and the associated peak amplitudes, the overall shape of the more averaged quantities such as total reaction probabilities and vibrational branching ratios are not seriously affected. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we report the results of ab initio calculations on the energetics and kinetics of oxygen-driven carbon gasification reactions using a small model cluster, with full characterisation of the stationary points on the reaction paths. We show that previously unconsidered pathways present significantly reduced barriers to reaction and must be considered as alternative viable paths. At least two electronic spin states of the model cluster must be considered for a complete description. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of benzene at various wavelengths upon absorption of one or two UV photons followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G2M level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for C6H5+H, C6H4+H-2, C4H4+C2H2, C4H2+C2H4, C3H3+C3H3, C5H3+CH3, and C4H3+C2H3 have been calculated subsequently using both numerical integration of kinetic master equations and the steady-state approach. The results show that upon absorption of a 248 nm photon dissociation is too slow to be observable in molecular beam experiments. In photodissociation at 193 nm, the dominant dissociation channel is H atom elimination (99.6%) and the minor reaction channel is H-2 elimination, with the branching ratio of only 0.4%. The calculated lifetime of benzene at 193 nm is about 11 mus, in excellent agreement with the experimental value of 10 mus. At 157 nm, the H loss remains the dominant channel but its branching ratio decreases to 97.5%, while that for H-2 elimination increases to 2.1%. The other channels leading to C3H3+C3H3, C5H3+CH3, C4H4+C2H2, and C4H3+C2H3 play insignificant role but might be observed. For photodissociation upon absorption of two UV photons occurring through the neutral hot benzene mechanism excluding dissociative ionization, we predict that the C6H5+H channel should be less dominant, while the contribution of C6H4+H-2 and the C3H3+C3H3, CH3+C5H3, and C4H3+C2H3 radical channels should significantly increase. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.