972 resultados para r-functions
Resumo:
Resistance to virus infections in higher vertebrates is mediated in part through catalysis of RNA decay by the, interferon-regulated 2-5A system. A functional 2-5A system requires two enzymes, a 2-5A synthetase that produces 5'-phosphorylated, 2',5'-linked oligoadenylates (2-5A) in response to double-stranded RNA, and the 2-5A-dependent RNase L. We have coexpressed these human enzymes in transgenic tobacco plants by using a single plasmid containing the cDNAs for both human RNase L and a low molecular weight form of human 2-5A synthetase under control of different, constitutive promoters. Expression of the human cDNAs in the transgenic plants was demonstrated from Northern blots, by specific enzyme assays, and by immunodetection (for RNase L). Infection of leaves, detached or in planta, of the coexpressing transgenic plants by tobacco mosaic virus, alfalfa [correction of alfafa] mosaic virus, or tobacco etch virus resulted in necrotic lesions. In contrast, leaves expressing 2-5A synthetase or RNase L alone and leaves containing the plasmid vector alone produced typical systemic infections. While alfalfa mosaic virus produced lesions only in the inoculated leaves regardless of the concentration of virus in the inoculum, high, but not low, levels of tobacco etch virus inoculum resulted in escape of virus to uninoculated leaves. Nevertheless, there was a substantial reduction of tobacco etch virus yield as measured by ELISA assay in the coexpressing transgenic plants. These results indicate that expression of a mammalian 2-5A system in plants provides resistance to virus infections.
Resumo:
The MKC7 gene was isolated as a multicopy suppressor of the cold-sensitive growth phenotype of a yeast kex2 mutant, which lacks the protease that cleaves pro-alpha-factor and other secretory proproteins at pairs of basic residues in a late Golgi compartment in yeast. MKC7 encodes an aspartyl protease most closely related to product of the YAP3 gene, a previously isolated multicopy suppressor of the pro-alpha-factor processing defect of a kex2 null. Multicopy MKC7 suppressed the alpha-specific mating defect of a kex2 null as well as multicopy YAP3 did, but multicopy YAP3 was a relatively weak suppressor of kex2 cold sensitivity. Overexpression of MKC7 resulted in production of a membrane-associated proteolytic activity that cleaved an internally quenched fluorogenic peptide substrate on the carboxyl side of a Lys-Arg site. Treatment with phosphatidylinositol-specific phospholipase C shifted Mkc7 activity from the detergent to the aqueous phase in a Triton X-114 phase separation, indicating that membrane attachment of Mkc7 is mediated by a glycosyl-phosphatidylinositol anchor. Although disruption of MKC7 or YAP3 alone resulted in no observable phenotype, mkc7 yap3 double disruptants exhibited impaired growth at 37 degrees C. Disruption of MKC7 and YAP3 in a kex2 null mutant resulted in profound temperature sensitivity and more generalized cold sensitivity. The synergism of mkc7, yap3, and kex2 null mutations argues that Mkc7 and Yap3 are authentic processing enzymes whose functions overlap those of Kex2 in vivo.
Resumo:
The recombinant human thyroid stimulating hormone (rhTSH) containing oligosaccharides terminated with NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc beta 1 showed higher in vivo activity and lower metabolic clearance rate (MCR) than pituitary human TSH (phTSH), which contains oligosaccharides terminating predominantly in SO(4)4GalNAc(beta 1-4)GlcNAc beta 1. To elucidate the relative contribution of the sulfated and sialylated carbohydrate chains of each subunit in the MCR and bioactivity of the hormone, the alpha and beta subunits of phTSH, rhTSH, and enzymatically desialylated rhTSH (asialo-rhTSH; asrhTSH) were isolated, their oligosaccharides were analyzed, and the respective subunits were dimerized in various combinations. The hybrids containing alpha subunit from phTSH or asrhTSH showed higher in vitro activity than those with alpha subunit from rhTSH, indicating that sialylation of alpha but not beta subunit attenuates the intrinsic activity of TSH. In contrast, hybrids with beta subunit from rhTSH displayed lower MCR compared to those with beta subunit from phTSH. The phTSH alpha-rhTSH beta hybrid had the highest in vivo bioactivity followed by rhTSH alpha-rhTSH beta, rhTSH alpha-phTSH beta, phTSH alpha-phTSH beta, and asrhTSH dimers. These differences indicated that hybrids with beta subunit from rhTSH displayed the highest in vivo activity and relatively low MCR, probably due to higher sialylation, more multiantennary structure, and/or the unique location of the beta-subunit oligosaccharide chain in the molecule. Thus, the N-linked oligosaccharides of the beta subunit of glycoprotein hormones have a more pronounced role than those from the alpha subunit in the metabolic clearance and thereby in the in vivo bioactivity. In contrast, the terminal residues of alpha-subunit oligosaccharides have a major impact on TSH intrinsic potency.
Resumo:
The proper placement of the Escherichia coli division septum requires the MinE protein. MinE accomplishes this by imparting topological specificity to a division inhibitor coded by the minC and minD genes. As a result, the division inhibitor prevents septation at potential division sites that exist at the cell poles but permits septation at the normal division site at midcell. In this paper, we define two functions of MinE that are required for this effect and present evidence that different domains within the 88-amino acid MinE protein are responsible for each of these two functions. The first domain, responsible for the ability of MinE to counteract the activity of the MinCD division inhibitor, is located in a small region near the N terminus of the protein. The second domain, required for the topological specificity of MinE function, is located in the more distal region of the protein and affects the site specificity of placement of the division septum even when separated from the domain responsible for suppression of the activity of the division inhibitor.
Resumo:
Dung roller beetles of the genus Canthon (Coleoptera: Scarabaeinae) emit an odorous secretion from a pair of pygidial glands. To investigate the chemical composition of these secretions, we used stir bar sorptive extraction (SBSE), coupled with gas chromatography–mass spectrometry (GC–MS) for analysis of extracts of pygidial gland secretions secreted by the dung roller beetles Canthon femoralis femoralis and Canthon cyanellus cyanellus. Chemical analyses of volatiles collected from pygidial gland secretions comprise a great diversity of the functional groups. Chemical profile comparisons showed high intra- and interspecific variability. The pygidial gland secretion of Canthon f. femoralis was dominated by sesquiterpene hydrocarbons, whereas the profile of Canthon c. cyanellus was dominated by carboxylic acids. The different pygidial secretions have a high diversity of chemical compounds suggesting a multifunctional nature involving some key functions in the biology. We discuss the biological potential of these compounds found in the pygidial glands of each species with respect to their ecological and behavioral relevance.
Resumo:
This note provides an approximate version of the Hahn–Banach theorem for non-necessarily convex extended-real valued positively homogeneous functions of degree one. Given p : X → R∪{+∞} such a function defined on the real vector space X, and a linear function defined on a subspace V of X and dominated by p (i.e. (x) ≤ p(x) for all x ∈ V), we say that can approximately be p-extended to X, if is the pointwise limit of a net of linear functions on V, every one of which can be extended to a linear function defined on X and dominated by p. The main result of this note proves that can approximately be p-extended to X if and only if is dominated by p∗∗, the pointwise supremum over the family of all the linear functions on X which are dominated by p.
Resumo:
This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().
Resumo:
"February 1973."
Resumo:
Includes his Betrachtungen über die Kummer'sche Fläche und ihren Zusammenhang mit den hyperelliptischen Functionen p = 2. München : Akademische Buchdruckerei von F. Straub, 1878. 59 p.
Resumo:
"IP733038"--Page 2 of cover.
Resumo:
Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: ( a) for steep slopes, (b) for specific erosion processes, and ( c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C - D sin theta)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A - 1.50, B 6.51, C 0.94, and D 5.30 (r(2) = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A - 1.12, B 16.05, C 2.61, and D 8.32 (r(2) = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related ( log - log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.
Resumo:
The estimated parameters of output distance functions frequently violate the monotonicity, quasi-convexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects of input and output changes on productivity growth and relative efficiency levels. We show how a Bayesian approach can be used to impose these constraints on the parameters of a translog output distance function. Implementing the approach involves the use of a Gibbs sampler with data augmentation. A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations from truncated pdfs. Our methods are developed for the case where panel data is available and technical inefficiency effects are assumed to be time-invariant. Two models-a fixed effects model and a random effects model-are developed and applied to panel data on 17 European railways. We observe significant changes in estimated elasticities and shadow price ratios when regularity restrictions are imposed. (c) 2004 Elsevier B.V. All rights reserved.