954 resultados para quantum corrections to solitons
Resumo:
We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Delta and the on-site Hubbard U. We find that for a finite Delta and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = U-AF via a first-order phase transition. For U smaller than U-AF the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature T-AF(U,Delta) or, equivalently, on decreasing U below U-AF(T,Delta)], within both methods, for weak to intermediate values of U/t. In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T, DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond U-AF. At U-N > U-AF, when the Neel temperature T-N for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second-order transition. For U >> Delta, T-N similar to t(2)/U(1 - x(2)), where x = 2 Delta/U and thus T-N increases with increase in Delta/U. In the three-dimensional parameter space of (U/t, T/t, and Delta/t), as T increases, the surface of first-order transition at U-AF(T,Delta) and that of the second-order transition at U-N(T,Delta) approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points that separates the surfaces of first- and second-order phase transitions.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.
Resumo:
We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.
Resumo:
Some problems of edge waves and standing waves on beaches are examined.
The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.
Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.
The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.
Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.
Resumo:
The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.
Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.
Resumo:
We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.
Resumo:
The rate of electron transport between distant sites was studied. The rate depends crucially on the chemical details of the donor, acceptor, and surrounding medium. These reactions involve electron tunneling through the intervening medium and are, therefore, profoundly influenced by the geometry and energetics of the intervening molecules. The dependence of rate on distance was considered for several rigid donor-acceptor "linkers" of experimental importance. Interpretation of existing experiments and predictions for new experiments were made.
The electronic and nuclear motion in molecules is correlated. A Born-Oppenheimer separation is usually employed in quantum chemistry to separate this motion. Long distance electron transfer rate calculations require the total donor wave function when the electron is very far from its binding nuclei. The Born-Oppenheimer wave functions at large electronic distance are shown to be qualitatively wrong. A model which correctly treats the coupling was proposed. The distance and energy dependence of the electron transfer rate was determined for such a model.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The isotopic composition of the enhanced low energy nitrogen and oxygen cosmic rays can provide information regarding the source of these particles. Using the Caltech Electron/Isotope Spectrometer aboard the IMP-7 satellite, a measurement of this isotopic composition was made. To determine the isotope response of the instrument, a calibration was performed, and it was determined that the standard range-energy tables were inadequate to calculate the isotope response. From the calibration, corrections to the standard range-energy tables were obtained which can be used to calculate the isotope response of this and similar instruments.
The low energy nitrogen and oxygen cosmic rays were determined to be primarily ^(14)N and ^(16)O. Upper limits were obtained for the abundances of the other stable nitrogen and oxygen isotopes. To the 84% confidence level the isotopic abundances are: ^(15)N/N ≤ 0.26 (5.6- 12.7 MeV/nucleon), ^(17)0/0 ≤ 0.13 (7.0- 11.8 MeV/nucleon), (18)0/0 ≤ 0.12 (7.0 - 11.2 MeV/nucleon). The nitrogen composition differs from higher energy measurements which indicate that ^(15)N, which is thought to be secondary, is the dominant isotope. This implies that the low energy enhanced cosmic rays are not part of the same population as the higher energy cosmic rays and that they have not passed through enough material to produce a large fraction of ^(15)N. The isotopic composition of the low energy enhanced nitrogen and oxygen is consistent with the local acceleration theory of Fisk, Kozlovsky, and Ramaty, in which interstellar material is accelerated to several MeV/nucleon. If, on the other hand, the low energy nitrogen and oxygen result from nucleosynthesis in a galactic source, then the nucleosynthesis processes which produce an enhancement of nitrogen and oxygen and a depletion of carbon are restricted to producing predominantly ^(14)N and ^(16)O.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
Topological superconductors are particularly interesting in light of the active ongoing experimental efforts for realizing exotic physics such as Majorana zero modes. These systems have excitations with non-Abelian exchange statistics, which provides a path towards topological quantum information processing. Intrinsic topological superconductors are quite rare in nature. However, one can engineer topological superconductivity by inducing effective p-wave pairing in materials which can be grown in the laboratory. One possibility is to induce the proximity effect in topological insulators; another is to use hybrid structures of superconductors and semiconductors.
The proposal of interfacing s-wave superconductors with quantum spin Hall systems provides a promising route to engineered topological superconductivity. Given the exciting recent progress on the fabrication side, identifying experiments that definitively expose the topological superconducting phase (and clearly distinguish it from a trivial state) raises an increasingly important problem. With this goal in mind, we proposed a detection scheme to get an unambiguous signature of topological superconductivity, even in the presence of ordinarily detrimental effects such as thermal fluctuations and quasiparticle poisoning. We considered a Josephson junction built on top of a quantum spin Hall material. This system allows the proximity effect to turn edge states in effective topological superconductors. Such a setup is promising because experimentalists have demonstrated that supercurrents indeed flow through quantum spin Hall edges. To demonstrate the topological nature of the superconducting quantum spin Hall edges, theorists have proposed examining the periodicity of Josephson currents respect to the phase across a Josephson junction. The periodicity of tunneling currents of ground states in a topological superconductor Josephson junction is double that of a conventional Josephson junction. In practice, this modification of periodicity is extremely difficult to observe because noise sources, such as quasiparticle poisoning, wash out the signature of topological superconductors. For this reason, We propose a new, relatively simple DC measurement that can compellingly reveal topological superconductivity in such quantum spin Hall/superconductor heterostructures. More specifically, We develop a general framework for capturing the junction's current-voltage characteristics as a function of applied magnetic flux. Our analysis reveals sharp signatures of topological superconductivity in the field-dependent critical current. These signatures include the presence of multiple critical currents and a non-vanishing critical current for all magnetic field strengths as a reliable identification scheme for topological superconductivity.
This system becomes more interesting as interactions between electrons are involved. By modeling edge states as a Luttinger liquid, we find conductance provides universal signatures to distinguish between normal and topological superconductors. More specifically, we use renormalization group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as a lead. Interestingly, arbitrarily weak interactions induce qualitative changes in the behavior relative to the free-fermion limit, leading to a sharp dichotomy in conductance for the trivial (narrow superconductor) and topological (wide superconductor) cases. Furthermore, we find that strong interactions can in principle induce parafermion excitations at a superconductor/quantum spin Hall junction.
As we identify the existence of topological superconductor, we can take a step further. One can use topological superconductor for realizing Majorana modes by breaking time reversal symmetry. An advantage of 2D topological insulator is that networks required for braiding Majoranas along the edge channels can be obtained by adjoining 2D topological insulator to form corner junctions. Physically cutting quantum wells for this purpose, however, presents technical challenges. For this reason, I propose a more accessible means of forming networks that rely on dynamically manipulating the location of edge states inside of a single 2D topological insulator sheet. In particular, I show that edge states can effectively be dragged into the system's interior by gating a region near the edge into a metallic regime and then removing the resulting gapless carriers via proximity-induced superconductivity. This method allows one to construct rather general quasi-1D networks along which Majorana modes can be exchanged by electrostatic means.
Apart from 2D topological insulators, Majorana fermions can also be generated in other more accessible materials such as semiconductors. Following up on a suggestion by experimentalist Charlie Marcus, I proposed a novel geometry to create Majorana fermions by placing a 2D electron gas in proximity to an interdigitated superconductor-ferromagnet structure. This architecture evades several manufacturing challenges by allowing single-side fabrication and widening the class of 2D electron gas that may be used, such as the surface states of bulk semiconductors. Furthermore, it naturally allows one to trap and manipulate Majorana fermions through the application of currents. Thus, this structure may lead to the development of a circuit that enables fully electrical manipulation of topologically-protected quantum memory. To reveal these exotic Majorana zero modes, I also proposed an interference scheme to detect Majorana fermions that is broadly applicable to any 2D topological superconductor platform.
Resumo:
Neste trabalho abordamos a teoria de Ginzburg-Landau da supercondutividade (teoria GL). Apresentamos suas origens, características e resultados mais importantes. A idéia fundamental desta teoria e descrever a transição de fase que sofrem alguns metais de uma fase normal para uma fase supercondutora. Durante uma transição de fase em supercondutores do tipo II é característico o surgimento de linhas de fluxo magnético em determinadas regiões de tamanho finito chamadas comumente de vórtices. A dinâmica destas estruturas topológicas é de grande interesse na comunidade científica atual e impulsiona incontáveis núcleos de pesquisa na área da supercondutividade. Baseado nisto estudamos como essas estruturas topológicas influenciam em uma transição de fase em um modelo bidimensional conhecido como modelo XY. No modelo XY vemos que os principais responsáveis pela transição de fase são os vórtices (na verdade pares de vórtice-antivórtice). Villain, observando este fato, percebeu que poderia tornar explícita a contribuição desses defeitos topológicos na função de partição do modelo XY realizando uma transformação de dualidade. Este modelo serve como inspiração para a proposta deste trabalho. Apresentamos aqui um modelo baseado em considerações físicas sobre sistemas de matéria condensada e ao mesmo tempo utilizamos um formalismo desenvolvido recentemente na referência [29] que possibilita tornar explícita a contribuição dos defeitos topológicos na ação original proposta em nossa teoria. Após isso analisamos alguns limites clássicos e finalmente realizamos as flutuações quânticas visando obter a expressão completa da função correlação dos vórtices o que pode ser muito útil em teorias de vórtices interagentes (dinâmica de vórtices).
Resumo:
[ES]En la actualidad el proceso de mecanizado mediante electroerosión por hilo (WEDM) posee varias problemáticas a la hora de la ejecución de los cortes para producir diferentes formas, ya sean esquinas, radios de redondeo o de acuerdo y por último la realización de círculos. Es por ello por lo que se elabora el presente trabajo cuya finalidad es llegar a caracterizar los errores cometidos en el corte de desbaste de probetas con trayectorias circulares y tecnología estándar. De esta manera se podrá cuantificar las desviaciones que se producen en las piezas en función del espesor y de sus radios. Toda la información obtenida en el trabajo permitirá una futura actuación en diversos parámetros máquina, elaborando nuevas tecnologías o bien poder mitigarlos realizando correcciones geométricas, ajustando sus tolerancias.