885 resultados para quantum cascade laser


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the Fortran program SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. The dynamics can be determined classically via the Lorentz force and Landau–Lifshitz equations or, alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo routines. Multiple background fields can be included in the simulation and, where applicable, the propagation direction, field type (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we present a compact tunable all-room-temperature frequency-doubling scheme, using a periodically poled potassium titanyl phosphate (PPKTP) waveguide and a QD-ECDL. A broad wavelength tunability of the second harmonic generated light (SHG) in the spectral region between 567.7 and 629.1 nm was achieved, with maximum conversion efficiencies in range of 0.34%-7.9%. The maximum output power for the SHG light was 4.11 mW at 591.5 nm, achieved for 52 mW of launched pump power at 1183 nm, resulting in a conversion efficiency of 7.9%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generation of stable dual and/or multiple longitudinal modes emitted from a single quantum dot (QD) laser diode (LD) over a broad wavelength range by using volume Bragg gratings (VBG's) in an external cavity setup is reported. The LD operates in both the ground and excited states and the gratings give a dual-mode separation around each emission peak of 5 nm, which is suitable as a continuous wave (CW) optical pump signal for a terahertz (THz) photomixer device. The setup also generates dual modes around both 1180m and 1260 nm simultaneously, giving four simultaneous narrow linewidth modes comprising two simultaneous difference frequency pump signals. (C) 2011 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the first self-mode-locked optically pumped quantum-dot semiconductor disk laser. Our mode-locked device emits sub-picosecond pulses at a wavelength of 1040 nm and features a record peak power of 460 W at a repetition rate of 1.5 GHz. In this work, we also investigate the temperature dependence of the pulse duration as well as the time-bandwidth product for stable mode locking. © 2014 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on a record-high output power from an optically pumped quantum-dot vertical-external-cavity surface-emitting laser, optimized for high-power emission at 1040 nm. A maximum continuous-wave output power of 8.41 W is obtained at a heat sink temperature of 1.5 °C. By inserting a birefringent filter inside the laser cavity, a wavelength tuning over a range of 45 nm is achieved. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 μm without pulse compression, external cavity, gain-or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, we report on a high-power operation of an optically pumped quantum-dot semiconductor disk laser designed for emission at 1180 nm. As a consequence of the optimization of the operation conditions, a record-high continuous-wave output power exceeding 7 W is obtained for this wavelength at a heat-sink temperature of 2 °C. A wavelength tuning over a range of 37 nm is achieved using a birefringent filter inside the cavity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse.